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We review recent work on level set methods for following the evolution of
complex interfaces. These techniques are based on solving initial value partial
differential equations for level set functions, using techniques borrowed from
hyperbolic conservation laws. Topological changes, corner and cusp develop-
ment, and accurate determination of geometric properties such as curvature
and normal direction are naturally obtained in this setting. The methodology
results in robust, accurate, and efficient numerical algorithms for propagat-
ing interfaces in highly complex settings. We review the basic theory and
approximations, describe a hierarchy of fast methods, including an extremely
fast marching level set scheme for monotonically advancing fronts, based on
a stationary formulation of the problem, and discuss extensions to multiple
interfaces and triple points. Finally, we demonstrate the technique applied
to a series of examples from geometry, material science and computer vision,
including mean curvature flow, minimal surfaces, grid generation, fluid mech-
anics, combustion, image processing, computer vision, and etching, deposition
and lithography in the microfabrication of electronic components.
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1. Introduction

Propagating interfaces occur in a wide variety of settings. As physical en-
tities, they include ocean waves, burning flames, and material boundaries.
Less obvious boundaries are equally important, and include shapes against
backgrounds, hand-written characters, and iso-intensity contours in images.

The goal of this paper is to describe some recent work on level set methods,
which attempts to unify these problems and provide a general framework for
modelling the evolution of boundaries. Our aim is to review a collection
of state-of-the-art details of computational techniques for tracking moving
interfaces, and to give some sense of the flavour and breadth of applications.

Level set methods are numerical techniques that offer remarkably power-
ful tools for understanding, analysing, and computing interface motion in a
host of settings. At their core, they rely on a fundamental shift in how one
views moving boundaries; rethinking the Lagrangian geometric perspective
and exchanging it for an Eulerian, initial value partial differential equation
perspective. Five clear advantages result from this new view of propagating
interfaces.

1  From a theoretical/mathematical point of view, the real complexities of
front motion are illuminated, in particular, the role of singularities, weak
solutions, shock formation, entropy conditions and topological change in
the evolving interface.

2 From a numerical perspective, natural and accurate ways of computing
delicate quantities emerge, including the ability to build high-order ad-
vection schemes, compute local curvature in two and three dimensions,
track sharp corners and cusps, and handle subtle topological changes of
merger and breakage.

3  From an implementation point of view, since the approach is based on
an initial value partial differential equation, robust schemes result from
numerical parameters set at the beginning of the computation. The error
is thus controlled by

e the order of the numerical method
e the grid spacing Ah
e the time step At.

4  Computational adaptivity, both in meshing and in computational labour,
is possible, as is a clear path to parallelism.

5  For monotonically advancing fronts obeying certain speed laws, we in-

troduce exceptionally fast methods based on narrow band techniques
and sorting algorithms.

In this paper, we survey an illustrative subset of past and current applica-
tions of level set methods. By no means is this an exhaustive review. A large



312 J. A. SETHIAN

body of work has been reluctantly skipped in the effort to keep this paper of
reasonable length. The interested reader is referred to the many references
given throughout the text.

PART I: LEVEL SET FORMULATIONS

2. Theory of front evolution

Consider a boundary, either a curve in two dimensions or a surface in three di-
mensions, separating one region from another. Imagine that this curve/surface
moves in its normal direction with a known speed function F. Our goal is
to track the motion of this interface as it evolves. We are only concerned
with the motion of the interface in its normal direction: throughout, we shall
ignore tangential motions of the interface.

/

Inside —F=F(L FB,I)

Outside Outside

/

Fig. 1. Curve propagating with speed F' in normal direction.

The speed function F' can be thought of as depending on three types of
arguments, namely

F=F(L,G,I), (2.1)
where

L = Local properties of the front are those determined by local geomet-
ric information, such as curvature and normal direction.

G = Global properties of the front such as integrals along the front and
associated differential equations, are those whose solutions depend on the
shape and position of the front. For example, suppose the interface is a
source of heat affecting diffusion on either side of the interface, which in
turn influences the motion of the interface. This would be characterized
as global argument.
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I = Independent properties are those that are independent of the shape
of the front, such as an underlying fluid velocity which passively trans-
ports the front.

Much of the challenge in interface problems comes from producing an ad-
equate model for the speed function F': this is a separate issue independent of
the goal of an accurate scheme for advancing the interface based on the model
for F'. In this section, we assume that the speed function F is known. In Part
V, we discuss the development of models for a collection of applications.

Our first goal is to develop the necessary theory to understand the interplay
between the speed function F' and the shape of the interface. For ease of
discussion, we now turn to the simplest case of a closed curve propagating in
the plane.

2.1. Fundamental formulation

Let y be a smooth, closed initial curve in R?, and let y(¢) be the one-parameter
family of curves generated by moving v = (¢ = 0) along its normal vector
field with speed F'. Here, F is the given scalar function. Thus, we have that
n - & = F, where Z is the position vector of the curve, t is time, and 7 is the
unit normal to the curve.

As a first attempt, a natural approach is to consider a parametrized de-
scription of the motion. We further restrict ourselves and imagine that the
speed function F' depends only on the local curvature x of the curve, that
is, F = F(k). Thus, we let the position vector Z(s,t) parametrize 7 at
time t. Here, 0 < s < S, and we assume periodic boundary conditions
Z(0,t) = Z(S,t). The curve is parametrized so that the interior is on the
left in the direction of increasing s (see Fig. 2). Let 7i(s,t) be the para-
metrization of the outward normal and k(s,t) be the parametrization of the
curvature. The equations of motion can then be written in terms of individual
components Z = (z,y) as

uF () o F (k)

G ERST I
where we have used the parametrized expression for the curvature x =
(Ysss — Tssys)(x2 + y2)~3/? inside the speed function F(k). This is a ‘Lag-
rangian’ representation because the range of (z(s,t),y(s,t)) describes the
moving front.

Yt =

Ty = (2.2)

2.2. Total variation: stability and the growth of oscillations

What happens to oscillations in the initial curve as it moves? We summarize
the argument in Sethian (1985) showing that the decay of oscillations depends
only on the sign of F;, at Kk = 0. The metric g(s,t), which measures the
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x(s,t=0),y(s,t=0)

Fig. 2. Parametrized view of propagating curve.

‘stretch’ of the parametrization, is given by g(s,t) = (22 + y2)/2. Define the
total oscillation (also known as the total variation) in the front

S
Var(t) = /0 (s, )|g(s, ) ds. (2.3)

This measures the amount of ‘wrinkling’. Our goal is to find out if this
wrinkling increases or decreases as the front evolves (see Fig. 3).

Differentiation of both the curvature and the metric with respect to time,
together with substitution from equation (2.2) produces the corresponding
evolution equations for the metric and curvature, namely

Kt = —g_l(Fsg_l)s — K’F (2.4)

gt = grF (2.5)

(Here, g~1 is 1/g, not the inverse). Now, suppose we have a non-convex

initial curve moving with speed F'(x), and suppose the moving curve stays
smooth. By evaluating the time change of the total variation in the solution,
we have the following (see Sethian (1985)).

Theorem Consider a front moving along its normal vector field with speed
F(k), as in equation (2.2). Assume that the initial curve -y(0) is smooth and
non-convex, so that k(s,0) changes sign. Assume that F' is twice differenti-
able, and that x(s,t) is twice differentiable for 0 < s < Sand 0 <t < T.
Then, for 0 <t < T,

e if F, <0 (F, > 0) wherever k = 0, then

dVZE(t) <0 (dV;;(t) > 0); (2.6)
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T

(a) Original curve (b) Decrease in variation (c) Increase in variation

Fig. 3. Change in variation.

o if F, <0 (Fk>0)and ks # 0 wherever ¥ = 0, then

dVar(t) dVar(t)
—a < 0 (——dt—— > 0). (2.7)

Remarks The theorem states that if F,, < 0 wherever x = 0, then the total
variation decreases as the front moves and the front ‘smooths out’, that is,
the energy of the front dissipates. The front is assumed to remain smooth in
the interval 0 < t < T (the curvature is assumed to be twice differentiable).
(In the next section, we discuss what happens if the front ceases to be smooth
and develops a corner.) In the special case when 7(t) is convex for all ¢, the
theorem is trivial, since Var(t) = fOS kgds = 2w. The proof may be found in
Sethian (1985).

Two important cases can be easily checked. A speed function F(k) = 1—ex
for € positive has derivative F;, = —e¢, and hence the total variation decays.
Conversely, a speed function of the form F(k) = 1 + ex yields a positive
speed derivative, and hence oscillations grow. We shall see that the sign of
the curvature term in this case corresponds to the backwards heat equation,
and hence must be unstable.

2.3. The role of entropy conditions and weak solutions

The above theorem assumes that the front stays smooth and differentiable.
In many cases of evolving fronts, differentiability is soon lost. For example,
consider the periodic initial cosine curve

¥(0) = (—s, [1 + cos 27s]/2) (2.8)

propagating with speed F'(k) = 1. The exact solution to this problem at time
t may be easily constructed by advancing each point of the front in its normal
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(a) Swallowtail (F' = 1.0) (b) Entropy solution (F = 1.0)

Fig. 4. Cosine curve propagating with unit speed.

direction a distance t. In fact, in terms of our parametrization of the front,
the solution is given by

B ys(s,t =0) _
x(s,t) = 25,6 = 0) + 42(s, £ = 0))1/2 t+z(s,t = 0), (2.9)
y(s,t) = — Zs(s,t = 0) t+y(s,t =0). (2.10)

(2(s,t = 0) + y2(s,t = 0))1/2

In Fig. 4, the solution is given for this propagating cosine curve.

It is clear that the front develops a sharp corner, known as a shock, in finite
time; however, once this corner develops, it is not at all clear how to construct
the normal at the corner and continue the evolution, since the derivative is
not defined there. Thus, beyond the formation of the discontinuity in the
derivative, we need a weak solution, so-called because the solution weakly
satisfies the definition of differentiability.

How shall we continue the solution beyond the formation of the singularity
in the curvature corresponding to the corner in the front? The correct answer
depends on the nature of the interface under discussion. If we regard the
interface as a geometric curve evolving under the prescribed speed function,
then one possible weak solution is the ‘swallowtail’ solution formed by letting
the front pass through itself; this is the solution shown in Fig. 4a. We note
that this solution is in fact the one given by equations (2.9), (2.10); the lack
of differentiability at the centre point does not destroy the solution, since we
have written the solution in terms of the initial data.

However, if we regard the moving curve as an interface separating two re-
gions, the front at time ¢ should consist of only the set of all points located
a distance t from the initial curve. (This is known as the Huygens’ principle
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&

(a) Shock (b) Rarefaction fan
Fig. 5. Front propagating with unit normal speed.

construction.) Roughly speaking, we want to remove the ‘tail’ from the ‘swal-
lowtail’. In Fig. 4b, we show this alternate weak solution. Another way to
characterize this weak solution is via the following ‘entropy condition’ posed
by Sethian (1982, 1985): if the front is viewed as a burning flame, then once a
particle is burnt it stays burnt. Careful adherence to this stipulation produces
the Huygens’ principle construction.

What does this ‘entropy condition’ have to do with the notion of ‘entropy’?
An intuitive answer is that an entropy condition stipulates that no new inform-
ation can be created during the evolution of the problem. Once an entropy
condition is invoked, some information about the initial data is lost. Indeed,
our entropy condition says that once a particle is burnt, it stays burnt, that
1s, once a corner has developed, the solution is no longer reversible. The
problem cannot be run ‘backwards’ in time; if we try to do so, we will not
retrieve the initial data. Thus, some information about the solution is forever
lost.

As further illustration, we consider the case of a V-shaped front propagating
normal to itself with unit speed (F = 1). In Fig. 5a, the point of the front
is downwards: as the front moves inwards with unit speed, a shock develops
as the front pinches off, and an entropy condition is required to select the
correct solution to stop the solution from being multiple-valued. Conversely,
in Fig. 5b, the point of the front is upwards: in this case the unit normal
speed results in a circular fan, which connects the left state with slope +1 to
the right state, which has slope —1.

It is important to summarize a key point in the above discussion. Our
choice of weak solution given by our entropy condition rests on the perspective
that the front separates two regions, and the assumption that we are interested
in tracking the progress of one region into the other.
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=

Fig. 6. Entropy solution is the limit of viscous solution.

2.4. Effects of curvature: the viscous limit and the link to hyperbolic
conservation laws

Consider now a speed function of the form F' = 1 — ek, where € is a constant.
The modifying effects of curvature on the former constant speed law are
profound, and in fact pave the way towards constructing accurate numerical
schemes that adhere to the correct entropy condition.

Following Sethian (1985), the curvature evolution equation given by (2.4)
can be rewritten in terms of arclength, namely

L&

Kt = €Kaa + €6° — K2, (2.11)

where the second derivative of the curvature « is taken with respect to arclength
a. This is a reaction-diffusion equation; the drive toward singularities due
to the reaction term (ex® — x2) is balanced by the smoothing effect of the
diffusion term (€kqq). Indeed, with € = 0, we have a pure reaction equa-
tion k; = —k2, and the developing corner can be seen in the exact solu-
tion k(s,t) = k(s,0)/(1 + tx(s,0)), which is singular in finite ¢ if the initial
curvature is anywhere negative. Thus, as shown, corners can form in the
moving curve when € = 0.

Consider again the cosine front given in equation (2.8) and the speed func-
tion Fi(k) = 1—ek, € > 0. As the front moves, the troughs at s =n+1/2,n =
0,%1, 42, .... are sharpened by the negative reaction term (because x < 0 at
such points) and smoothed by the positive diffusion term (see Fig. 6a). For
€ > 0, it can be shown (see Sethian (1985) and Osher and Sethian (1988)) that
the moving front stays C°°. The entropy-satisfying solution to this problem
when F' =1 from Fig. 4b is shown in Fig. 6b.

The central observation, and key to the level set approach, is the following
link.
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Consider the above propagating cosine curve and the two solutions:

® X vaure(t), obtained by evolving the initial front with F, = 1 — ex
®  Xionstant(t), obtained with speed function F' = 1 and the entropy condi-
tion.

Then, at any time T,
llIT(l) X(furvature(T) = XCOHStaHt (T) (212)
€—

Thus, the limit of motion with curvature, known as the ‘viscous limit’, is the
entropy solution for the constant speed case, see Sethian (1985).

Why is this known as the ‘viscous limit’, or, more accurately, what does this
have to do with viscosity? In order to see why viscosity is an appropriate
name, we turn to the link between propagating fronts and hyperbolic conser-
vation laws.

An equation of the form

ug + [G(w)]y = 0 (2.13)

is known as a hyperbolic conservation law. A simple example is Burger’s
equation, given by

ug + uugy = 0, (2.14)

which describes the motion of a compressible fluid in one dimension. The
solution to this equation can develop discontinuities, known as ‘shocks’, where
the fluid undergoes a sudden expansion or compression. These shocks (for
example, a sonic boom) can arise from arbitrarily smooth initial data; they
are a function of the equation itself. However, if one includes the effects of
fluid viscosity, the equation includes a right-hand side, namely

U + Uy = €Ugy. (2.15)

This second derivative on the right-hand side acts like a smoothing term and
stops the development of such shocks; it can be shown that the solutions must
remain smooth for all time.

What does this have to do with our propagating front equation? Consider
the initial front given by the graph of f(z), with f periodic on [0,1], and
suppose that the propagating front remains a function for all time. Let % be
the height of the propagating function at time t, thus ¢¥(x,0) = f(x). The
tangent at (z,) is (1,%5). Referring to Fig. 7, the change in height V in a
unit time is related to the speed F' in the normal direction by

v 1 2\1/2
= (—Uf—)—— (2.16)
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Fig. 7. Variables for propagating graph.

and thus the equation of motion becomes
W = F(1+92)Y2, (2.17)

Using the speed function F(k) = 1—ex and the formula & = —t,,/(1+42)%/2,

we get

€ wxz
1+ 92

We first note that this is a partial differential equation with a first-order time
and space derivative on the left-hand side, and a parabolic second-order term
on the right. Differentiating both sides of this equation yields an evolution
equation for the slope u = dy)/dz of the propagating front, namely

P — (1+ 922 = (2.18)

Ug
1+ u?

Thus, the derivative of our equation with parabolic right-hand side for
the changing height ¢ looks like a viscous hyperbolic conservation law with
G(u) = (1 + u?)Y/2 for the propagating slope u; see Sethian (1987). Hyper-
bolic conservation laws of the above form have a long history, in fact, our
entropy condition is equivalent to the one for propagating shocks in hyper-
bolic conservation laws. Our goal will be to exploit the theory and technology
of numerical solutions of hyperbolic conservation laws to devise accurate nu-
merical schemes to solve the equation of motion for propagating fronts.

Before doing so, however, we have a technical problem. The equation of
motion given by equation (2.17) only refers to fronts that remain the graph
of a function as they move. The above ideas must be extended to include
propagating fronts that are not easily written as functions. This is the time-
dependent level set idea introduced by Osher and Sethian (1988).

w + [—(1+ D)2, = ¢ Je- (2.19)
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3. The time-dependent level set formulation
3.1. Formulation

Given a closed N — 1 dimensional hypersurface I'(¢), we now produce an
Eulerian formulation for the motion of the hypersurface propagating along
its normal direction with speed F, where F' can be a function of various
arguments, including the curvature, normal direction, etc. The main idea of
the level set methodology is to embed this propagating interface as the zero
level set of a higher-dimensional function ¢. Let ¢(z,t = 0), where x is a
point in RN, be defined by

d(z,t = 0) = +d, (3.1)

where d is the distance from x to I'(¢ = 0), and the plus (minus) sign is chosen
if the point z is outside (inside) the initial hypersurface I'(t = 0). Thus, we
have an initial function ¢(x,t = 0) : RN — R with the property that

IT(t = 0) = (z|é(z,t = 0) = 0). (3.2)

Our goal is to produce an equation for the evolving function ¢(x,t) that
contains the embedded motion of I'(t) as the level set ¢ = 0. Let z(t) be the
path of a point on the propagating front. That is, (¢ = 0) is a point on the
initial front I'(t = 0), and z¢ - n = F(z(t)) where n is the normal to the front
at z(t). Since we want the zero level set of the evolving function ¢ to always
match the propagating hypersurface, we must have

d(z(t),t) = 0. (3.3)
By the chain rule,
¢ + Vo(z(t),t) - 2'(t) = 0. (3.4)
Since n = V¢/|V¢|, we have the evolution equation for ¢, namely
¢t + F|Veg| =0 (3.5)
¢(z,t =0) given. (3.6)

This is our time-dependent level set equation. For certain forms of the speed
function F', we obtain a standard Hamilton-Jacobi equation.

In Fig. 8, taken from Sethian (1994), we show the outward propagation of
an initial curve and the accompanying motion of the level set function ¢.

In Fig. 8a, we show the initial circle, and in Fig. 8c, we show the circle at
a later time. In Fig. 8b, we show the initial position of the level set function
¢, and in Fig. 8d, we show this function at a later time. We refer to this as
an Eulerian formulation because the underlying coordinate system remains

fixed.
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Fig. 8. Propagating circle.

3.2. Advantages

There are four major advantages to this Eulerian level set formulation.

1 The evolving function ¢(z,t) always remains a function as long as F is
smooth. However, the level surface ¢ = 0, and hence the propagating
hypersurface I'(t) may change topology, break, merge, and form sharp
corners as the function ¢ evolves.

2 The second major advantage concerns numerical approximation. Be-
cause ¢(z,t) remains a function as it evolves, we may use a discrete
grid in the domain of £ and substitute finite difference approximations
for the spatial and temporal derivatives. For example, using a uniform
mesh of spacing h, with grid nodes (4, j), and employing the standard
notation that ¢7; is the approximation to the solution ¢(ih, jh, nAt),
where At is the time step, we might write

ntl _ 4n
B 20 (F) (V) =0 (37)
Here, we have used forward differences in time, and let Vij¢{’j be some
appropriate finite difference operator for the spatial derivative. Thus, an
explicit finite difference approach is possible.

3 Intrinsic geometric properties of the front may be easily determined
from the level set function ¢. For example, at any point of the front,
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the normal vector is given by
Vo
Vol

and the curvature of each level set is easily obtained from the divergence
of the gradient of the unit normal vector to the front, that is,

. V¢ _ ¢:cz¢§ - 2¢I¢y¢xy + ¢yy¢:%
IVl (63 + 67)3/ '

i = (3.8)

K=V (3.9)

4 Finally, there are no significant changes required to follow fronts in
three dimensions. By simply extending the array structures and gradient
operators, propagating surfaces are easily handled.

As an example of the application of level set methods, consider once again
the problem of a front propagating with speed F(k) =1 —ex. In Fig. 9, we
show two cases of a propagating initial triple sine curve. For € small (Fig.
9a), the troughs sharpen up and result in transverse lines that come too close
together. For e large (Fig. 9b), parts of the boundary with high values of
positive curvature can initially move downwards, and concave parts of the
front can move quickly upwards.

W
B
S§?2§@ZS§?2
_
W S0/ —
(a) F=1.-0.025 (b) F=1.-0.25x

Fig. 9. Propagating triple sine curve.

3.3. Theoretical aspects of the level set formulation

Numerical techniques for approximating moving fronts have been the focus
of much effort in computational physics. At the same time, the theoretical
analysis of moving curves and surfaces has been a subject of considerable
importance in its own right. The work of Gage (1984), Gage and Hamilton
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(1986) and Grayson (1987), discussed later, provided some groundbreaking
analysis of flow of curves under the curvature, and the seminal result that a
closed curve shrinking under its curvature collapses smoothly to a point.

Along a very different approach, Brakke (1978) applied varifold theory to
the problem of a hypersurface moving under its curvature, and in doing so
provided a wide-ranging perspective for these problems. His was a general
approach, and included problems in which the results were not necessarily
smooth. His analysis provided a detailed look at surface curvature evolution
problems.

There has been considerable theoretical analysis of the level set approach,
its formulation, and its relation to other perspectives on front propagation.
The model posed in Sethian (1982), which considered flame propagation as
a function of curvature, and introduced an entropy condition for evolving
fronts, served as the basis for theoretical analysis by Barles (1985). The full
level set methodology of Osher and Sethian (1988) provides a view of surface
evolution different from the one provided in the work of Gage, Grayson, and
Brakke. First, the embedding of the front as a higher-dimensional function
naturally accounts for some of the issues of topological change and corner
formation. Second, and more importantly, the transformation of a geometry
problem into an initial value partial differential equation means that available
technology, including regularity of solutions, viscous solutions of Hamilton—
Jacobi equations, and questions of existence and uniqueness, can be applied
in this geometrical setting.

Using the above level set approach, Evans and Spruck (1991, 19924, 19925,
1995), and Chen, Giga and Goto (1991), Giga and Goto (1992) and Giga,
Goto and Ishii (1992) performed detailed analysis of curvature flow in a series
of papers. They exploited much of the work on viscosity solutions of partial
differential equations developed over the past 15 years (see Lions (1982)),
which itself was inspired by the corresponding work applied to hyperbolic
conservation laws. These papers examined the regularity of curvature flow
equations, pathological cases, and the link between the level set perspective
and the varifold approach of Brakke. These papers opened up a series of in-
vestigations into further issues; we also refer the interested reader to Ilmanen
(1992, 1994) and Evans, Soner and Souganidis (1992).

3.4. Summary
The discussion in Part [ may be summarized as follows:
1 A front propagating at a constant speed can form corners as it evolves;

at such points, the front is no longer differentiable and a weak solution
must be constructed to continue the solution.
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2 The correct weak solution, motivated by viewing the front as an evolving
interface separating two regions, comes by means of an entropy condi-
tion.

3 A front propagating at a speed that depends on its curvature does not
form corners and stays smooth for all time. Furthermore, the limit of this
motion as the dependence on curvature vanishes is the entropy-satisfying
solution obtained for the constant speed case.

4 If the propagating front remains a graph as it moves, there is a direct link
between the equation of motion and one-dimensional hyperbolic conser-
vation laws. The role of curvature in a propagating front is analogous
to the role of viscosity in equations of viscous compressible fluid flow.

5 By embedding the motion of a curve as the zero level set of a higher-
dimensional function, an initial value partial differential equation can
be obtained which extends the above to include arbitrary curves and
surfaces moving in two and three space dimensions.

4. The stationary level set formulation

In the above level set equation
b1+ FIV| =0 (4.1)

the position of the front is given by the zero level set of ¢ at a time ¢. Suppose
we now restrict ourselves to the particular case of a front propagating with a
speed F' that is either always positive or always negative. In this case, we can
convert our level set formulation from a time-dependent partial differential
equation to a stationary one, in which time has disappeared. We now describe
a stationary level set formulation, which is common in control theory.

To explain this transformation, imagine the two-dimensional case in which
the interface is a propagating curve, and suppose we graph the evolving zero
level set above the zy plane. That is, let T'(z,y) be the time at which the
curve crosses the point (z,y). The surface T(z,y) then satisfies the equation

|VT|F = 1. (4.2)

Equation (4.2) simply says that the gradient of arrival time surface is inversely
proportional to the speed of the front. This is a Hamilton—-Jacobi equation,
and the recasting of the a front motion problem into a stationary one is
common in a variety of applications; see Falcone (1994) and Falcone, Giorgi
and Loretti (1994). In the case where the speed function F' depends only on
position, we get the well-known Eikonal equation. The requirement that the
speed function always be positive™ is so that the crossing time surface T(x, y)
is single-valued.

* or conversely, always negative
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To summarize,

e In the time-dependent level set equation, the position of the front I' at
time ¢ is given by the zero level set of ¢ at time ¢, that is I'(¢) = {(z,y) :
¢(z,t) = 0}.

e In the stationary level set equation, the position of the front I" is given
by the level set I'(t) = {(z,y) : T(z,y) = t}.

That is, we wish to solve

Time-dependent formulation Stationary formulation
¢+ F|Ve| =0 IVT|F =1
Front=T'(t) = {(z,y) : $(a,t) = 0} Front='(t) = {(z,) : T(x,y) = 1}
Applies for arbitrary F Requires F > 0.
(4.3)

In both cases, we require an ‘entropy-satisfying’ approximation to the gradi-
ent term. In the next section, we discuss appropriate approximations for this
term, leading to schemes for both the time-dependent and stationary level
set formulations. Our goal now is to turn to the issue of numerical approx-
imations, and to develop the necessary theory and numerics to approximate
accurately the level set initial value partial differential equation.

PART II: NUMERICAL APPROXIMATION

5. Traditional techniques for tracking interfaces

Before discussing the numerical approximation of these level set equations, it
is instructive to review briefly more traditional techniques for computing the
motion of interfaces.

Marker /string methods In these methods, a discrete parametrized ver-
sion of the interface boundary is used. In two dimensions, marker
particles are used; in three dimensions, a nodal triangularization of the
interface is often developed. The positions of the nodes are then updated
by determining front information about the normals and curvature from
the marker representation. Such representations can be quite accur-
ate; however, limitations exist for complex motions. Firstly, if corners
and cusps develop in the evolving front, markers usually form ‘swal-
lowtail’ solutions, which must be removed through delooping techniques
which attempt to enforce an entropy condition inherent in such motion;
see Sethian (1985). Second, topological changes are difficult to handle:
when regions merge, some markers must be removed. Third, significant
instabilities in the front can result, since the underlying marker particle
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motions represent a weakly ill-posed initial value problem; see Osher
and Sethian (1988). Finally, extensions of such methods to three dimen-
sions require additional work.

Cell-based methods In these methods, introduced by Noh and Woodward
(1976), the computational domain is divided into a set of cells containing
‘volume fractions’. These volume fractions are numbers between 0 and
1, and represent the fraction of each cell containing the physical ma-
terial. At any time, the front can be reconstructed from these volume
fractions. Since their introduction, many elaborate reconstruction tech-
niques have been developed over the years to include pitched slopes and
curved surfaces; see Chorin (1980), Hirt and Nicholls (1981) and Puck-
ett (1991). The accompanying accuracy depends on the sophistication
of the reconstruction and the so-called ‘advection sweeps’. Some of the
most elaborate and accurate versions of these schemes to date are due
to Puckett; see Puckett (1991). Advantages of such techniques include
the ability to easily handle topological changes, design adaptive mesh
methods, and extend the results to three dimensions. However, determ-
ination of geometric quantities such as normals and curvature can be
inaccurate.

Characteristic methods In these methods, ‘ray-trace’-like techniques are
used. The characteristic equations for the propagating interface are used,
and the entropy condition at forming corners (see Sethian (1985)) is
formally enforced by constructing the envelope of the evolving charac-
teristics. Such methods handle the looping problems more naturally, but
may be complex in three dimensions and require adaptive adding and
removing rays, which can cause instabilities and /or oversmoothing.

6. A first attempt at constructing an approximation to the
gradient

We now turn to our time-dependent level set equation itself, and attempt to
construct a numerical method.
Recall that our goal is to solve the equation given in (3.5) by

¢t + FIV| =0, (6.1)

¢(z,t =0) given. (6.2)

The marker particle method discretizes the front. The volume-of-fluid (VOF)
method divides the domain space into cells containing fractions of material.
The level set method divides the domain up into grid points that discretize
the values of the level set function ¢. Thus, the grid values give the height of
a surface above the domain, and if we slice this surface by the xy plane, we
extract the zero level set corresponding to the front.
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Another way to look at this is to say that each grid point contains the
value of the level set function at that point. Thus, there is an entire family
of contours, only one of which is the zero level set (see Fig. 10). Rather than
move each of the contours in a Lagrangian fashion, we stand at each grid
point and update its value to correspond to the motion of the surface, thus
producing a new contour value at that grid point.
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Fig. 10. Dark line is zero level set corresponding to front.

What is the right way to approximate this equation? We shall investigate
the most straightforward numerical approach we can think of by studying the
simpler case of an evolving curve whose position can always be described as
the graph of a function. The equation for this case was given in (2.17) as
shown in Fig. 7, namely

v = F(1+y2)Y2 (6.3)

Perhaps the most straightforward way of creating an algorithm to approx-
imate the solution to this equation is to replace all spatial derivatives with
central differences and the time derivative with a forward difference, just as
we did in the Lagrangian case. However, it is easy to see that such an
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algorithm may not work. Let F'(k) = 1 and consider the initial value problem

Yy = (1 + w§)1/27 (64)

w0 =f@={ V205 TS0} (©5)

The initial front is a ‘V’ formed by rays meeting at (1/2,0). By our entropy
condition, the solution at any time t is the set of all points located a distance
t from the initial ‘V’. To construct a numerical scheme, divide the interval
[0,1] into 2M — 1 points, and form the central difference approximation to
the spatial derivative ¢, in equation (6.4), namely

win—'_l B 71[1171’ _ [1 + [d}zn-i—l - 1/}?—-1]2}1/2 (6 6)
t 20z '

Since xpr = 1/2, by symmetry, ¥ar41 = ¥a—1, thus ¥4(1/2,0) = 1.
However, for all z # 1/2, v is correctly calculated to be /2, since the graph
is linear on either side of the corner and thus the central difference approx-
imation is exact. Note that this has nothing to do with the size of the space
step Az or the time step At. No matter how small we take the numerical
parameters, as long as we use an odd number of points, the approzimation
to Yy at © = 1/2 gets no better. It is simply due to the way in which the
derivative 9, is approximated. In Fig. 11, we show results using this scheme,
with the time derivative 1, replaced by a forward difference scheme.

>

<
€

Exact solution Central differences At = .005 Central differences At = .0005

Fig. 11. Central difference approximation to level set equation.

It is easy to see what has gone wrong. In the exact solution, 1; = /2 for all
x # 1/2. This should also hold at = 1/2 where the slope is not defined; the
Huygens construction sets ¢ (z = 1/2,t) equal to lim,_,; /2 ;. Unfortunately,
the central difference approximation chooses a different (and, for our purpose,
wrong) limiting solution. It sets the undefined slope ¥, equal to the average of
the left and right slopes. As the calculation progresses, this miscalculation of
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the slope propagates outwards from the spike as wild oscillations. Eventually,
these oscillations cause blowup in the solution.

It is clear that some more care must be taken in formulating an algorithm.
What we require are schemes that approximate the gradient term |V¢| in a
way that correctly accounts for the entropy condition. This is the topic of the
next section.

7. Schemes from hyperbolic conservation laws

Our schemes are linked to those from hyperbolic conservation laws. As mo-
tivation, consider the single scalar hyperbolic conservation law

ut + [G(u)]z = 0. (7.1)

It is well known that discontinuities known as shocks can develop in the
solution, even with smooth initial data; see Lax (1970) and LeVeque (1992).
These discontinuities occur because of the collision of characteristics, and an
appropriate weak solution must be constructed to carry the solution beyond
the collision time. The correct ‘entropy solution’ is obtained by considering
the limit of the associated viscous conservation laws u; + [G(u)]z = €ugy as
the viscous coefficient € goes to zero.

From a numerical point of view, the equation can be approximated through
the construction of appropriate numerical fluxes ¢ such that

upt! —up _ _g(u?,u?+1) —g(uy, u) (7.2)
At B Az ’ ’
where we require that g(u,u) = G(u). A wide collection of numerical flux
functions are available, such as the Lax—Friedrichs flux, Godunox flux, and
TVD schemes; see Colella and Puckett (1994) and LeVeque (1992). The goal
in the construction of such flux functions is to make sure that the conservation
form of the equation is preserved, make sure the entropy condition is satisfied,
and try to give smooth (highly accurate) solutions away from the discontinu-
ities. One of the most straightforward approximate numerical fluxes is the
Engquist—Osher scheme (Engquist and Osher 1980), which is given by
u2 dG
geo(u1,u2) = G{uy) + min(—dz, 0) du. (7.3)

U1

For the Burger’s equation in which G(u) = u?

compact representation of this flux function as

, we have the particularly

gEo(ul, UQ) = (max(ul, 0)2 + min(uz, 0)2). (7.4)

This flux function will serve as our core technique for approximating the level
set equation.
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Fig. 12. Update of u through numerical flux function.

8. Approximations to the time-dependent level set equation

In this section, we develop schemes for the level set equation

¢+ + F|Ve| = 0. (8.1)
We begin by writing this equation with a general Hamiltonian H as
¢t +H(¢I7¢ya¢z) = Oa (82)

where
H(u,v,w) = Vu? + v2 + w?. (8.3)
We begin with the one-dimensional version, that is, ¢; + H{¢,) = 0, where
H(u) = Vu?.
From the previous section, we have numerical flux functions for the conser-
vation equation u; + [G(u)]s = 0, satisfying
;H_l _u:'l g(u?au?-}—l) —_g(uin—lau’in)

= — . 8.4
At Az (8-4)

In terms of our computational grid shown in Fig. 12, the value of G at
the point (i — 1/2)Az (called G;_/2) is approximated by the numerical flux
function g as

U

Gi-172 = 9(ui_1, u). (8.5)
Similarly, at the point ¢ + 1/2, we have
Gi+1/2 = Q(U?,u?_*_l). (8.6)

Then from Fig. 12, we see that the right-hand side of equation (7.2) is just
the central difference operator applied to the numerical flux function g. As
the grid size goes to zero, consistency requires that g(u,u) = G(u).

We are now all set to build a scheme for our level set equation. Let u = ¢,.
Then we can write

¢t + H(u) =0. (8.7)

In terms of our computational grid in Fig. 13, in order to produce (b?“ we
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Fig. 13. Update of ¢ through numerical Hamiltonian.

need ¢ as well as a value for H(u'). Fortunately, an approximate value for

H(ul) is ezactly what is given by our numerical flux function, hence we have

H(u) = g(u;—1/2, Yit1/2)- (8.8)

All that remains is to construct values for v in the middle of our computa-
tional cells. Since u = ¢, we can use a central difference approximation in
@ to construct those values. Thus (see Fig. 13), we have

P — i1 P — ¢?>
Az Az ’
where ¢ is one of the numerical flux functions and, again, we have substituted
forward and backward difference operators on ¢ for the values of u at the left
and right states.
In the specific case of our one-dimensional level set equation with H(u) =

ol — g7 — At g ( (8.9)

Vu?, we can use the EO scheme given in the previous section and, for speed
F =1, write

PPl = ¢ — At (max(D;,0)? + min(D}®,0)2)1/2, (8.10)

This is the level set scheme given in Osher and Sethian (1988). As long
as the Hamiltonian is symmetric in each of the space dimensions, the above
can be replicated in each space variable to construct schemes for two- and
three-dimensional front propagation problems.

In general we apply the following philosophy:

1 if the Hamiltonian H is convex, then we use the above scheme
if the Hamiltonian H is non-convex, then we use a variant on the Lax—
Friedrichs scheme described below.

It is important to point out that far more sophisticated schemes exist
than the ones presented here. In the applications of these schemes to hy-
perbolic problems and shock dynamics, high-order resolution schemes are
often necessary (Colella and Puckett 1994), because of the differentiation of
the numerical flux function g. However, in our case, because we are solving
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(a) Exact solution (b) Scheme with 20 points (c¢) Scheme with 100 points

Fig. 14. Upwind, entropy-satisfying approximations to the level set equation.

¢ + H(u) = 0 rather than u; + [H(u)]z, the differentiation is not required.
Thus, we have found that for almost all practical purposes, the first- and
second-order schemes presented below are adequate.

Before constructing the general schemes, let’s return to the example of the
propagating curve. Earlier, we attempted to follow the propagation of a simple
corner moving with speed F' = 1. Our attempts to use a central difference
approximation failed. In Fig. 14, we show what happens if we use the scheme
given in equation (8.10). The exact answer is shown, together with two
simulations. The first uses the entropy-satisfying scheme with only 20 points
(Fig. 14b), the second (Fig. 14¢) with 100 points. In the first approximation,
the entropy condition is satisfied, but the corner is somewhat smoothed due to
the small number of points used. In the more refined calculation, the corner
remains sharp, and the exact solution is very closely approximated.

9. First- and second-order schemes for convex speed
functions

Given a convex speed function F' (that is, a speed function F such that the
resulting Hamiltonian H = F|V¢| is convex), we can produce the following
schemes, first presented in Osher and Sethian (1988). Start with the equation

¢t +H(¢.’Ea¢ya¢z) :O7 (91)
and approximate it by

A R P va (9:2)
ik~ Pij-1k Phirik ~ Phgk
Ay ’ Ay ’

Pk~ Piih1 Plikes = Pl
Az ’ Az '
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A multi-dimensional version of this scheme (Osher and Sethian 1988) is then
given by

geo(uy, ug, v1, V2, w1, ws) = [max(uy,0)? + min(ug, 0) + (9.3)
max(vy, 0)2 4+ min(vg, 0)2 +
max(wy,0)? + min(ws, 0)4]/2,
Thus we have
First-order space convex
oit! = ok — At (max(Fijx, 0)VF + min(Fij,, 0)V7) (9.4)
where
vag (max(Di;;, 0)% + min(D}, 0)% + (9.5)
max (D, 0)? + min(D;;z, 0)2 +
1/2
max(Dy77, 0)2 + min(D37,0)2) "7,
v (max(D;;;g, 0)% + min(D;E,0)% + (9.6)

max(D;;z, 0)% + min(D;, 0)% +

max(DlT']'.,Zc, 0)2 + min(D;}, 0)2) 1/2.
Here, we have used a short-hand notation in which D+*¢} is rewritten as
D= ete.

Second-order space convex

The above schemes can be extended to higher order, using technology from
Harten, Engquist, Osher and Chakravarthy (1987). The basic trick is to build
a switch that turns itself off whenever a shock is detected; otherwise, it will
use a higher-order polynomial approximation of minimal oscillations. These
details will not be presented; see Osher and Sethian (1988) for details. The
scheme is the same as the above; however, this time V* and V™ are given by

vt = (max(A, 0)? 4 min(B, 0)? + (9.7
max(C,0)? + min(D, 0)? +
max(E, 0)? 4+ min(F, 0)2) 1/2,

V™ = (max(B,0)? + min(4,0)? + (9.8)
max(D, 0)% 4+ min(C, 0)% +

1/2
max(F,0)% + min(E,0)2) / ,



LEVEL SET METHODS FOR PROPAGATING INTERFACES 335

where
_z Az o - -
A =D+ = m(Dg", D), B =Dig — S§Em(D*", D),
(9.9)
—y Ay —y—y pHy- A + +y—
C=Dyi + 7m(Dij% YD), D= DZZ - —zym(Dij%”,DijZ ‘),

9.10)

bl

9 ik ijk ijk ijk ik
9.11)

(

A
E=Dgi+~m(Dji % Dii*), F =D}~ 4m(D}it, Dz )
(

and the switch function is given by

z if [z < [y]
m@,y):{{y ifrx|>|yr} “’20}. (9.12)
0 Ty <0

10. First- and second-order schemes for non-convex speed
functions

Given a non-convex speed function F' (that is, a speed function F for which

the resulting Hamiltonian H = F|V¢| is non-convex), we can follow the work

in Osher and Shu (1991), replacing the Hamiltonian F|V¢| with the Lax-
Friedrichs numerical flux function. This produces the following schemes.

First-order space non-conver

D% 4 Di= ny_{_Dij D~_z+D+2

1 ik ijk jk jk j ik
O = R — Ar[H (I, Uk RS (10,1
1 _ 1 + _ 1 _
—50u(Df = D) = sau(Dif = Digt) — Sow(Dfi = Db

where oy, (aw, ay,) is a bound on the partial derivative of the Hamiltonian with
respect to the first (second, third) argument, and the non-convex Hamiltonian
is a user-defined input function.

Second-order space non-convez

A+B C+D E+F
2 7 2 7 2

1 1 1

~5au(B = 4) = zay(D = C) = Sau(F - B)],

Sk = ik — At[H(

) (10.2)

where A, B, C, D, E, and F' are defined as above. For details, see Osher and
Shu (1991) and Adalsteinsson and Sethian (19955, 1995¢).
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11. Approximations to curvature and normals

As discussed above, one of the main advantages of level set formulations is
that geometric qualities of the propagating interface, such as curvature and
normal direction, are easily calculated. For example, consider the case of a
curve propagating in the plane. The expression for the curvature of the zero
level set assigned to the interface itself (as well as all other level sets) is given
by
Vo robl — 20y 60bey + dyyd?
Vol (92 + ¢2)%/2

In the case of a surface propagating in three space dimensions, one has
many choices for the curvature of the front, including the mean curvature

Kkpr and the Gaussian curvature kg. Both may be conveniently expressed in
terms of the level set function ¢ as

=V

(11.1)

(¢yy + ¢zz)¢:% + (d)zz + ¢zz)¢§ + (¢1:1: + ¢yy)¢§

V¢ _2¢x¢y¢x - 2¢w¢z¢xz - 2¢y¢z¢yz
d’g((ﬁyy(ﬁzz - 4’22) + ¢’£2/(¢$Z¢ZZ - ¢:%z) + ¢§(¢wz¢yy - ¢azcy)
+ 2[¢z¢y(¢zz¢yz - ¢xy¢zz) + ¢y¢z (¢:cy¢a:z - ¢yz¢zz)
kg = + ¢z¢z(¢xy¢yz - ¢zz¢yy)] (11‘3)

(92 + ¢35 + ¢2)°

Construction of the normal itself requires a more sophisticated scheme
than simply building the difference approximation to V¢. This is because
at corners, the direction of the normal can undergo a jump. This suggests
the following technique, introduced by Sethian and Strain (1992). First, the
one-sided difference approximations to the unit normal in each possible dir-
ection are formed. All four limiting normals are then averaged to produce the
approximate normal at the corner. Thus, the normal n;; is formed by first
letting

R .
= (Dgz’Dﬂl) (Dij” ’D+y) (11.5)
(D)2 + (DE1)2V2 (D) + (D;¥)2]V/2
(D, D;*) (D", D)

D7 £ (D7 ? (7 + (D

27

and then normalizing so that n;; = nJ;/|nj;|. If any of the one-sided ap-

zyl
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proximations to |V¢| is zero, that term is not considered and the weights are
adjusted accordingly.

12. Initialization and boundary conditions

The time-dependent level set approach requires an initial function ¢(z,t = 0)
with the property that the zero level set of that initial function corresponds
to the position of the initial front. The original level set algorithm computed
the signed distance from each grid point to the initial front, which is matched
to the zero level set. This is an expensive technique. Many other initial
functions are possible, including those that are essentially constant except in
a narrow band around the front itself.

The use of a finite computational grid means that we must develop bound-
ary conditions. If the speed function F' causes the front to expand (such as
in the case F' = 1), upwind schemes will naturally default to outward-flowing
one-sided differences at the boundary of the domain. However, in cases of
more complex speed functions, mirror boundary conditions usually suffice.

PART III: EXTENSIONS

13. A hierarchy of fast level set methods

The ahove time-dependent level set method is easily programmed. However,
it is not particularly fast, nor does it make efficient use of computational re-
sources. In this section, we consider a sequence of more sophisticated versions
of the basic scheme.

13.1. Parallel algorithms

The above method updates all the level sets, not just the zero level set cor-
responding to the front itself. The advantage of this approach is that the data
structures and operations are extremely clear, and it is a good starting point
for building level set codes.

There are a variety of circumstances in which this approach is desirable.
If, in fact, all the level sets are themselves important (such as problems en-
countered in image processing, which are discussed below), then computation
over the entire domain is required. A simple approach is to perform a par-
allel computation. Since each grid point is updated by a nearest neighbour
stencil using only grid points on each side, this technique almost falls under
the classification of ‘embarrassingly parallel’. In Sethian (1989), a parallel
version of the level set method was developed for the Connection Machine
CM-2 and CM-5. In the CM-2, nodes are arranged in a hypercube fash-
ion; in the CM-5, nodes are arranged in a fat-tree. The code was written in
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global CMFortran, and at each grid point CSHIFT operators were used to
update the level set function. The operation count per time step reduces to
O(1), since in most cases the full grid can be placed into physical memory.
A time-explicit second-order space method was used to update the level set
equation.

13.2. Adaptive mesh refinement

As a first level of creating a more efficient level set method, an adaptive
mesh refinement strategy can be pursued. This is the approach taken by
Milne and Sethian (1995), motivated by the adaptive mesh refinement work
in Berger and Colella (1989). Adaptivity may be desired in regions where
level curves develop high curvature or where speed functions change rapidly.
In Fig. 15a, we show mesh cells that are hierarchically refined in response to
a parent—child relationship around the zero level set of ¢. Calculations are
performed on both the fine and coarse grid. Grid cell boundaries always lie
along coordinate lines, and patches do not overlap; in the scheme presented
in Milne and Sethian (1995), no attempt is made to align the refined cells
with the front.

Vs
/
O ®
® @-
® |
(a) Cell hierarchy (b) Hanging nodes

Fig. 15. Adaptive mesh refinement.

The data structures for the adaptive mesh refinement are fairly straight-
forward. However, considerable care must be taken at the interfaces between
coarse and fine cells; in particular, the update strategy for ¢ at so-called
‘hanging nodes’ is subtle. These are nodes at the boundary between two
levels of refinement which do not have a full set of nearest neighbours re-
quired to update ¢. To illustrate, in Fig. 15b, we show a two-dimensional
adaptive mesh; the goal is to determine an accurate update strategy for the
hanging node marked o.
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The strategy for updating ¢ at such points is as follows. Consider the
archetypical speed function F(k) = 1 — ex.

e  The advection term 1 leads to a hyperbolic equation; here, straightfor-
ward interpolation of the updated values of ¢ from the coarse cell grid is
used to produce the new value of ¢ at o. The sophisticated technology
in Berger and Colella (1989) is not required, since we are modelling the
update according to the numerical flux function g, not the derivative of

the numerical flux function as required for hyperbolic conservation laws.
e In the case of the curvature term —ex, the situation is not as straight-

forward. The parabolic term cannot be approximated through simple
interpolation. Interpolation from updated values on the coarse grid to
the fine grid was shown to provide poor answers; if this procedure is
employed, the boundary between the two levels of refinement acts as a
source of noise, and significant error is generated at the boundary. In-
stead, values from both the coarse and refined grid next to the hanging
node are used to construct a least squares solution for ¢ before the up-
date. This solution surface is then formally differentiated to produce the
various first and second derivatives in each component direction. These
values are then used to produce the update value for ¢ similar to all
other nodes. For details, see Milne and Sethian (1995).

Fig. 16. Two-dimensional slice of adaptive mesh for propagating surface.

As illustration, in Fig. 16, we show a two-dimensional slice of a fully three-
dimensional adaptive mesh calculation of a surface collapsing under its mean
curvature. As discussed in a later section, the dumbbell neck pinches off under
such a configuration, due to the high positive value of the principal axis of
curvature.
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13.3. Narrow banding and fast methods

An alternative to the above techniques is particularly valuable when one wants
to track a specific front, namely the one associated with the zero level set.
There are several disadvantages with the ‘full-matrix’ approach given above.

Speed Performing calculations over the entire computational domain re-
quires O(N?) operations in two dimensions, and O(N3) operations in
three dimensions, where N is the number of grid points along a side.
As an alternative, an efficient modification is to perform work only in a
neighbourhood of the zero level set; this is known as the narrow band
approach. In this case, the operation count in three dimensions drops
to O(kN?), where k is the number of cells in the width of the narrow
band. This is a significant cost reduction. Typically, good results can
be obtained with about six cells on either side of the zero level.

Calculating extension variables The time-dependent level set approach
requires the extension of the speed function F' in equation (3.5) to all
of space; this then updates all of the level sets, not simply the zero level
set on which the speed function is naturally defined. Recall that three
types of arguments may influence the front speed F; local, global, and
independent. Some of these variables may have meaning only on the
front itself, and it may be both difficult and awkward to design a speed
function that extrapolates the velocity away from the zero level set in
a smooth fashion. Thus, another advantage of a narrow band approach
is that this extension need only be done to points lying in the narrow

band.

Choosing time step The full-matrix approach requires the choice of a time
step that applies in response to the maximum velocity over the entire
domain, not simply in response to the speed of the front itself. In a
narrow band implementation, the time step can be adaptively chosen in
response to the maximum velocity field only within the narrow band.
This is of significance in problems in which the front speed changes
substantially as it moves (for example, due to the local curvature or
as determined by the underlying domain). In such problems, the CFL
restriction for the velocity field for all the level sets may be much more
stringent than the one for those sets within the narrow band.

The above ‘narrow band’ method was introduced by Chopp (1993), used in
recovering shapes from images by Malladi, Sethian and Vemuri (1994), and
analysed extensively by Adalsteinsson and Sethian (1995a).

In Fig. 17 we show the placement of a narrow band around an initial front.
The entire two-dimensional grid of data is stored in a square array. A one-
dimensional object is then used to keep track of the points in this array (dark
grid points in Fig. 17 are located in a narrow band arcund the front of a user-
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Fig. 17. Pointer array tags interior and boundary band points.

defined width). Only the values of ¢ at points within the tube are updated;
values of ¢ at grid points on the boundary of the narrow band are frozen.
When the front moves near the edge of the tube boundary, the calculation is
stopped, and a new tube is built with the zero level set interface boundary at
the centre. This rebuilding process is known as ‘re-initialization’.

Thus, the narrow band method consists of the following loop:

tag ‘alive’ points in narrow band
e  build ‘land mines’ to indicate nearby edge

e initialize ‘far away’ points outside(inside) narrow band with large pos-
itive(negative) values

o  solve level set equation until a land mine is hit

s  rebuild, loop.

Use of narrow bands leads to level set front advancement algorithms which
are equivalent in complexity to traditional marker methods and cell tech-
niques, while maintaining the features of topological merger, accuracy, and
easy extension to multi-dimensions. Typically, the speed-up associated with
the narrow band method is about ten times faster on a 160 X 160 grid than
the full matrix method. Such a speed-up is substantial: in three-dimensional
simulations, it can make the difference between computationally intensive
problems and those that can be done with relative ease. Details on the ac-
curacy, typical tube sizes, and number of times a tube must be rebuilt may
be found in Adalsteinsson and Sethian (1995a).

This narrow banding technique requires a rebuilding and re-initialization of
a new narrow band around the location of the front. There are several ways
to perform this re-initialization, one of which leads to an efficient level set
scheme for the particular case of a front propagating with a speed F' = F(z, y)
where F is of one sign.
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13.4. Re-initialization techniques: direct evaluation, iteration, Huygens’
flowing

Direct evaluation

A straightforward approach is to find the zero level set by using a contour
plotter and then recalculate the signed distance from each grid point to this
zero level set to rebuild the band. This technique, first used in Chopp (1993),
can be used to ensure that the level set function stays well behaved. However,
this approach can be expensive, since the front must be explicitly constructed
and distances must be calculated to neighbouring grid points.

Iteration
An alternative to this was given by Sussman, Smereka and Osher (1994),
based on an observation of Morel. Its virtue is that one need not find the zero
level set to re-initialize the level set function. Consider the partial differential
equation

¢ = sign(¢)(1 — [Val). (13.1)

Given initial data for ¢, solving the above equation to steady state provides
a new value for ¢ with the property that |V@| = 1, since convergence occurs
when the right-hand side is zero. The sign function controls the flow of
information in (13.1); if ¢ is negative, information flows one way and if ¢ is
positive, then information flows the other way. The next effect is to ‘straighten
out’ the level sets on either side of the zero level set and produce a ¢ function
with |V¢| = 1, which in fact corresponds to the signed distance function.
Thus, their approach is to periodically stop the level set calculation and solve
(13.1) until convergence: if repeated sufficiently often, the initial data are
often close to the signed distance function, and few iterations are required.
One disadvantage of this technique is the relative crudeness of the switch
function based on the sign of the level set equation; considerable motion of
the zero level set can occur during the re-initialization, since the sign function
does not accurately model the exact location of the front.

Huygens’ principle flowing

An alternative technique is based on the idea of computing crossing times
as discussed in Sethian (1994), and is related to the ideas given in Kimmel
and Bruckstein (1993). Consider a particular value for the level set function
Ginitial (T, t). With speed function F' = 1, flow the level set function both
forward and backwards in time and calculate crossing times (that is when ¢
changes sign) at each grid point. These crossing times (both positive and
negative) are equal to the signed distance function by Huygens’ principle.
This approach has the advantage that one knows a prior: how long to run the
problem forward and backward to re-initialize grid points a given distance
from the front. This calculation can be performed using a high-order scheme
to produce accurate values for the crossing times.
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This idea of computing crossing times is equivalent to converting the level
set evolution problem into a stationary problem. This conversion can be used
to develop an extremely fast marching level set scheme for the particular case
of solving the level set equation for speed function F' = F(z,y), where F'is
always either positive or negative. This is discussed in the section on fast
marching methods for the stationary formulation.

14. Additional complexities

Since their introduction, the capabilities and applicability of time-dependent
level set methods have been considerably refined and extended. In this sec-
tion, we discuss a few extensions that have proved to be useful in a variety
of applications.

14.1. Masking and sources

Consider the problem of a front propagating with a speed I and subject
to the constraint that the evolving interface cannot enter into a region € in
the domain. This region Q is referred to as a ‘mask’, since it inhibits all
motion. There are several solutions to this problem, depending on the degree
of accuracy required.

The simplest solution is to set the speed function F equal to zero for all
grid points inside 2. The location of all points inside §2 can be determined
before any calculation is carried out. This technique assures that the front
stops within one grid cell of the mask. In Fig. 18, we show a plane front
propagating upwards with speed F' = 1 in the upwards direction, with a
rectangular block in the centre of the domain serving as a mask. In Fig. 18a,
the speed function is reset to zero inside the mask region, and as the front
propagates upwards it is stopped in the vicinity of the mask and is forced to
bend around it.

The calculations in Fig. 18a are performed on a very crude 13 x 13 mesh in
order to accentuate a problem with this approach, namely that the front can
only be guaranteed to stop within one grid cell of the obstacle itself. This is
because the level set method constructs an interpolated speed between grid
points, and hence by setting the speed function to zero on and in the mask,
the front slows down before it actually reaches the mask. Note that since this
means one grid cell normal to the mask’s boundary, a considerable amount
of error can result.

A different fix, which eliminates much of this problem, comes from an
alternate view. Given a mask area 2, construct the signed distance function
#% by taking the positive distance if inside Q and the negative distance if
outside (note that this is opposite sign choice from the one typically used).
Then we limit motion into the masked region not by modifying the speed
function, but instead by resetting the evolving level set function. Let ¢*) be
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(a) Velocity = 0 inside rectangle (b) ¢ reset by mask
Fig. 18. Front propagating upwards around masking block: 13 x 13 grid.

the value produced by advancing the level set ¢™ one time step. Then let
¢" ! = max(¢*, ¢"). (14.1)

This resets the level set function so that penetration is not possible; of course,
this is only accurate to the order of the grid. Results using this scheme are
shown in Fig. 18b. Again, we have used a very coarse grid to accentuate the
differences.

If we consider now the opposite problem, in which a region {2 acts as a
source, then the solution is equally straightforward, and we obtain ¢"t! =
min(¢*, —¢); this is the technique used in Rhee, Talbot and Sethian (1995).

14.2. Discontinuous speed functions and sub-grid resolution

Let us generalize the above problem somewhat, and imagine that we want to
solve an interface propagation problem in which there is a clear discontinuous
speed function. For example, one may want to track the propagation of an
interface through materials that correspond to differing media, across which
propagation rates change quite sharply. As an example, consider again the
evolution of the upwards propagating front, but this time the rectangular
block halves the speed (that is, F' = 1 outside 2 and F' = 0.5 inside and
on ). The standard level set will interpolate between these two speeds,
and the results obtained will depend on the placement of the underlying grid;
substantial variation in result will occur depending on whether a grid line lies
directly on, below, or above the bottom edge of the rectangular block.

In order to solve this problem accurately, we need some sub-grid inform-
ation about the speed function to construct correctly the speed function for
those cells that lie only partially within Q. Such a technique can be de-
vised, motivated by the idea of the volume-of-fluid methods discussed earlier.
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Given a region {2, before any calculation proceeds wz construct the cell frac-
tion Volin, which is a number between 0 and 1 for those cells that have at
least one grid point in Q and one outside 2. This cell fraction corresponds
to the amount of ) material in the cell. These values are stored, and a list
is kept of such boundary cells. We then proceed with the level set calcula-
tion, letting F' be given by its value in the corresponding region. However,
we modify the speed function for those cells that are marked as boundary
cells. At the beginning of the time step, compute the volume fraction Volfj
for the zero level set in each cell; this may be approximately done without
explicitly finding the zero level set through a least squares fit. This value is
then compared with the stored value Vol?j to provide an appropriate speed.

14.8. Multiple interfaces

As initially designed in Osher and Sethian (1988), the level set technique
applies to problems in which there is a clear distinction between an ‘inside’
and ‘outside’. This is because the interface is assigned the zero level value
between the two regions. Extensions to multiple (more than two) interfaces
have been made in some specific cases. In the case in which interfaces are
passively transported and behave nicely, one may be able to use only one
level set function and judiciously assign different values at the interfaces. For
example, the zero level set may correspond to the boundary between two
regions A and B, with the level set value 10 corresponding to the interface
between two regions B and C. If A and C never touch, then this technique
may be used to follow the interfaces in some cases.

However, in the more general case involving the emergence and motion of
triple points, a different approach is required, because many different situ-
ations can occur; see, for example, Bronsard and Wetton (1995) and Taylor,
Cahn and Handwerker (1992). Consider the following canonical example, as
illustrated in Fig. 19. Regions A and B are both circular disks growing into
region C with speed unity in the direction normal to the interface. At some
point, the interfaces will touch and meet at a triple point, where a clear notion
of ‘inside’ and ‘outside’ cannot be assigned in a consistent manner.

A level set approach to this problem has been proposed by Merriman, Bence
and Osher (1994); they move each interface separately for one time step, find
the interfaces of the various fronts, and then rebuild level set functions. This
technique requires re-initializing the pairwise level set functions; any of the
techniques described earlier can be used. Before describing this technique,
we discuss a later set of techniques presented in Sethian (19954, 1995b),
applicable to many cases, and which do not require any such re-initialization.
We will then return to the first algorithm in the case of motion driven by
surface tension where some sort of re-initialization is required.
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Fig. 19. Regions A and B expand into region C.

The key idea in each method lies in recasting the interface motion as the
motion of one level set function for each material. In some sense, this is what
was done in the re-ignition idea given in Rhee et al. (1995), where the front
was a flame, which propagated downstream under a fluid flow. This front was
re-ignited at each time step at a flame holder point by taking the minimum
of the advancing flame and its original configuration around the flame holder,
thus ensuring that the maximum burned fluid is achieved.

In general, imagine N separate regions and a full set of all possible pairwise
speed functions Fj; which describe the propagation speed of region 1 into
region J: F is taken as zero if region I cannot penetrate J. The idea is to
advance each interface to obtain a trial value for each interface with respect
to motion into every other region, and then combine the trial values in such
a way as to obtain the maximum possible motion of the interface.

In general then, proceed as follows. Given a region I, obtain N — 1 trial
level set functions ¢7; by moving region I into each possible region J, J=1,N
(J # I) with speed Frj. During the motion of region I into region J, assume
that all other regions are impenetrable, that is, use the masking rule given by
equation (14.1). We then test the penetrability of region J itself, leaving the
value of ¢7; unchanged if F7; # 0, otherwise modifying it with the maximum
of itself and —¢%;. Finally, to allow region 1 to evolve as much as possible,
we take the minimum over all possible motions to obtain the new position;
this is the re-ignition idea described earlier. Complete details of the approach
may be found in Sethian (1995q).

Three examples are shown to illustrate this approach. Given regions A, B,
and C, the influence matriz describes the interaction of the various regions
with each other. The interaction of each region with itself is null, hence the
matrix has a dash on the diagonal. The interaction of any pair of regions is
required to be zero in one of the two interactions.

In Fig. 20, regions A and B expand with unit speed into region C, but
cannot penetrate each other. They advance and meet; the boundary between
the two becomes a vertical straight line.
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(a) (b) (¢) (d)

Influence matrix | on A onB onC

Effect of A - 0.0 1.0
Effect of B 0.0 - 1.0
Effect of C 0.0 0.0 -

Fig. 20. A and B move into C with speed 1, stop at each other.

(a) (b) () (d)

Influence matrix | onA onB onC

Effect of A - 3.0 1.0
Effect of B 0.0 - 2.0
Effect of C 0.0 0.0 -

Fig. 21. A into C with speed 1, A into B with speed 3, B into C with speed 2.

Next, we consider a problem with different evolution rates. In Fig. 21,
region A grows with speed 1 into region C (and region C grows with speed
0 into region A), and region B grows with speed 2 into region C. Once they
come into contact, region A dominates region B with speed 3, thus region B
grows through Fig. 21c, and then is ‘eaten up’ by the advancing region A.
Note what happens: region A advances with speed 3 to the edge of region
B, which is only advancing with speed 1 into region C. However, region A
cannot pass region B, because its speed into region C is slower than that of
region B.
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(a3) T=00 (b) T=20 () T=30 (d T=50

Influence matrix \ onA onB onC

Effect of A - 1.0 0.0
Effect of B 0.0 - 1.0
Effect of C 1.0 0.0 -

Fig. 22. Spiralling triple point: 98 x 98 grid.

Finally, in Fig. 22, the motion of a triple point between regions A, B, and
C is shown. Assume that region A penetrates B with speed 1, B penetrates C
with speed 1, and C penetrates A with speed 1. The exact solution is given
by a spiral with no limiting tangent angle as the triple point is approached.
The triple point does not move; instead, the regions spiral around it. In Fig.
22, results are shown from a calculation on a 98 x 98 grid. Starting from the
initial configuration, the regions spiral around each other, with the leading
tip of each spiral controlled by the grid size. In other words, we are unable to
resolve spirals tighter than the grid size, and hence that controls the fine-scale
description of the motion. However, we note that the triple point remains
fixed. A series of additional calculations using this approach may be found
in Sethian (1995b).

14.4. Triple points

Consider now the case of a triple point motion in which the speed of each
interface is driven by curvature, which may correspond to surface tension.
Imagine a triple point in which each of the three regions is attempting to move
according to their own curvature. In Fig. 23a we show an initial configuration,
and in Fig. 23b a final state, which consists of the three lines meeting in equal
angles of 120 degrees.

If one attempts to apply the level set method for multiple interfaces de-
scribed in the previous sections, a difficulty occurs, because each level func-
tion attempts to move away from the others, creating a gap. In Fig. 23c, we
show this gap developing when a level set technique is applied to the final
state.
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(a) Initial state (b) Final state (c) Level set

Fig. 23. Evolution of triple point under curvature.

Two different level set type algorithms were introduced in Merriman et al.
(1994) for tackling this problem. The first can be viewed a ‘fix’ to the above
problem; the second is a wholly different level set approach.

First, the problem with the above calculation is that the various level sets
pull apart. A remedy is to reset the level set functions every time step to
hold the triple point in place, that is,

¢; = ¢; — max ¢, (14.2)

where the maximum is taken over all j # ¢. This keeps the triple point in
place; however, the cost is that the level set functions can develop spontaneous
zero crossings later in time. A remedy is to re-initialize all the level sets using
any of the re-initialization techniques described in the previous section. With
those two added steps in the algorithm, level set methods can easily handle
some interesting problems concerning triple points.

A considerably different approach works by applying applying a reaction-
diffusion type equation to a characteristic function assigned to each region,
which is one inside the region and zero outside. This algorithm works by
exploiting the link between curvature flow and a diffusion equation, along
the lines of the material discussed earlier. The basic idea is that a diffusion
term is applied, and then a sharpening term is executed, which sharpens up
the solution. The net effect is to evolve the boundary line under curvature.
This is a very clever algorithm, and can be applied to multiple interfaces. A
series of fascinating calculations are presented in Merriman et al. (1994); for
additional work on this topic, see Bronsard and Wetton (1995).

14.5. Building extension velocity fields

What happens when the speed of the moving front has meaning only on
the front itself? This is a common occurrence in areas such as combustion,
material science, and fluid mechanics, where the philosophy of embedding the
front as the zero level set of a family of contours can be problematic. In fact,
the most difficult part of level set methods is this ‘extension’ problem, and it
will be a central focus of Part IV,
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Recall the division of arguments in the speed function F' given in equation
(2.1). Front-based arguments are those that depend on geometric quantities
of the front, such as curvature and normal vector, and have a clear meaning
for all the level sets. Independent variables are equally straightforward, since
their contribution to the speed makes no reference to particular information
from the front itself.

The troublesome variables are the so-called ‘global’ variables, which can
arise from solving differential equations on either side of the interface. Briefly,
there are at least four ways to extend a velocity from the front to the grid
points.

1 At each grid point, find the closest point on the front. This was the
technique used in Malladi et al. (1994), and may be done efficiently in
many cases by tracing backwards along the gradient given by V.

2 Evaluate the speed function off the front using an equation that only
has meaning on the front itself. This is the technique used in the crys-
tal growth/dendritic solidification calculations employed in Sethian and
Strain (1992), where a boundary integral is evaluated both on and off
the front.

3 Develop an evaluation technique that assigns artificial speeds to the level
set going through any particular grid point. For example, in the etch-
ing/deposition simulations of Adalsteinsson and Sethian (19955, 1995c,
1996), visibility of the zero level set must be evaluated away from the
front itself.

4  Smearing the influence of the front. In the combustion calculations of
Rhee et al. (1995), the influence of the front is mollified to neighbouring
grid points on which an appropriate equation is solved.

PART IV: A NEW FAST METHOD

Consider the special case of a monotonically advancing front, that is, a front
moving with speed F' where F is always postive (or negative). Previously,
we have produced a stationary level set equation, namely

IVT|F =1. (14.3)

which is simply a static Hamilton—Jacobi equation; if F' is only a function
of position, this becomes the well-known Eikonal equation. A large body of
research has been devoted to studying these types of equations; we refer the
interested reader to Barles and Souganidis (1991), Lions (1982) and Sougan-
idis (1985), to name just a few. At the same time, there are a wide collection
of schemes to solve this problem; see, for example, Bardi and Falcone (1990),
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Falcone et al. (1994), Rouy and Tourin (1992) and Osher and Rudin (1992).
Here we introduce an entirely new and extremely fast method for solving this
equation. It relies on a marriage between our narrow band technique and a
fast heapsort algorithm, and can be viewed as an extreme one-cell version of
our narrow band technique.

For ease of discussion, we limit ourselves to a two-dimensional problem
inside a square from [0, 1] x [0, 1] and imagine that the initial front is along
the line y = 0; furthermore, we assume that we are given a positive speed
function F(z,y) that is periodic in z. Thus, the front propagates upwards off
the initial line, and the speed does not depend on the orientation of the front
(it depends only on independent variables, using our earlier terminology).
Using our approximation to the gradient, we are then looking for a solution
in the unit box to the equation

— _ . 2
F;' = max(D;;*T, 0)? + min(D};*T, 0)*+

max(D;¥T, 0)? + min(Dg-yT, 0)?), (14.4)

where T'(z,0) = 0.

Since equation (14.4) is in essence a quadratic equation for the value at each
grid point (assuming the others are held fixed), we can iterate until conver-
gence by solving the equation at each grid point, selecting the largest possible
value as the solution in accordance with obtaining the correct viscosity solu-
tion. An iterative algorithm for computing the solution to this problem was
introduced by Rouy and Tourin (1992). Typically, one iterates several times
through the entire set of grid points until a converged solution is reached.

15. A fast marching level set method

The key to constructing a fast marching algorithm is the observation that the
upwind difference structure of equation (14.4) means that information propag-
ates ‘one way’, that is, from smaller values of T to larger values. Hence, our
algorithm rests on ‘solving’ equation (14.4) by building the solution outwards
from the smallest time value 7. Our idea is to sweep the front ahead in an
upwind fashion by considering a set of points in a narrow band around the
existing front, and to march this narrow band forward, freezing the values of
existing points and bringing new ones into the narrow band structure. The
key is in the selection of which grid point in the narrow band to update. The
technique is easiest to explain algorithmically; see Fig. 24. We imagine that
we want to propagate a front through an N by /V grid with speed Fj; giving
the speed in the normal direction at each grid point. Here the set of grid
points j = 1 corresponds to the y axis, and we assume that F;; > 0.
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Fig. 24. Narrow band approach to marching level set method.

Algorithm
1 Initialize

(a) (Alive points: grey disks): Let A be the set of all grid points {¢,j =
1}; set T; 1 = 0.0 for all points in A.

(b) (Narrow band points: black circles): Let NarrowBand be the set
of all grid points {i,j = 2}, set T;; = dy/F;; for all points in
NarrowBand.

(c) (Far away points: black rectangles): Let FarAway be the set of all
grid points {i,j > 2}, set T; ; = oo for all points in FarAway.

2 Marching forwards

(a) Begin loop: Let (imin,jmin) be the point in NarrowBand with the
smallest value for T

(b) Add the point (imin, jmin) to A; remove it from NarrowBand.

(c) Add to the narrow band list any neighbouring points (¢min — 1, jmin),
(Ymin + 1, Jmin), (Ymins Jmin — 1), (¥min, Jmin + 1) that are not Alive.
If the neighbour is in FarAway, remove it from that list.

(d) Recompute the values of T at all neighbours according to equation
(14.4), selecting the largest possible solution to the quadratic equa-
tion.

(e) Return to top of loop.

We take periodic boundary conditions where required. Assuming for the
moment that it takes no work to determine the member of the narrow band
with the smallest value of T, the total work required to compute the solution
at all grid points is O(IN?), where calculation is performed on an N by N
grid.

Why does the above algorithm work? Since we are always locating the
smallest value in the narrow band, its value for T' must be correct; other
narrow band points or far away points with larger T' values cannot affect it.
The process of recomputing the T values at neighbouring points (that have
not been previously accepted) cannot yield a value smaller than any of that
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Fig. 25. Matrix of neighbouring values.

at any of the accepted points, since the correct viscosity solution is obtained
by selecting the largest possible solution to the quadratic equation. Thus,
we can march the solution outwards, always selecting the narrow band grid
point with minimum trial value for T, and readjusting neighbours. Another
way to look at this is that each minimum trial value begins an application
of Huygens’ principle, and the expanding wave front touches and updates all
others.

15.1. Proof that the algorithm constructs a viable solution

Here, we prove that the above algorithm produces a solution that everywhere
satisfies the discrete version of our equation, which is given by

2 _ —x R +z 2
fi; = max (max(D;;*T,0), — min(D;"T,0) ) +
2
max (max(Di;yT, 0),——min(D;;yT,O)) , (15.1)

where ffj =1 /F% We shall give a constructive proof. Since the values
of T(z,y, z) are built by marching forwards from the smallest value to the
largest, we need only show that whenever a ‘trial’ value is converted into
an ‘alive’ value, none of the recomputed neighbours obtain new values less
than the accepted value. If this is true, then we will always be marching
ahead in time, and thus the correct ‘upwind’ nature of the differencing will be
respected. We shall prove our result in two dimensions; the three-dimensional
proof is the same.

Thus, consider the matrix of grid values given in Fig. 25. Our argument
will follow the computation of the new value of T in the centre grid point to
replace the value of 7, based on the neighbouring values. We will assume,
without loss of generality, that the value A at the left grid point is the smallest
of all ‘trial’ values, and prove that when we recompute the value at the centre
grid point (called Trecomputed from 4), it cannot be less than A. This will prove
that the upwinding is respected, and that we need not go back and readjust
previously set values. We shall consider the four cases that (1) none of the
neighbours B, C, or D, are ‘alive’, (2) one of these neighbours is ‘alive’,
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(3) two of the neighbours are ‘alive’; and (4) all three of these neighbours are
‘alive’.

A, B, C and D are ‘trial’, A is the smallest

In this case, all of the neighbours around the centre grid point are either
‘trial’ or set to FarAway. Since A is the smallest such value, we convert that
value to ‘alive’ and recompute the value at the centre grid point. We now
show that the recomputed value A < Tiecomputed from 4 < A + f.

1 Suppose A+ f < min(B,D). Then Trecomputed from A = (A + f) is a
solution to the problem, since only the difference operator to the left

grid point is nonzero.

2 Suppose A+ f > min(B, D). Then, without loss of generality, assume
that B < D. We can solve the quadratic equation

(T’recomputed from A — A)2 + (Trecomputed from A — B)2 = f2' (152)

The discriminant is non-negative when f > (L\—&ﬁz’ which must be true

since we assumed that A + f > B and hence f > (B — A). Thus,
a solution exists, and it is easy to check that this solution must then
be greater than or equal to B and thus falls into the required range.
Furthermore, we see that T < A + f, since the second term on the left
is non-negative.

Thus, we have shown that A < Tiecomputed from 4 < A + f, and therefore
T ecomputed from A cannot be less than the just converted value A.
This case will act as template for the other cases.

B is ‘alive’, A, C and D are ‘trial’, A is the smallest of the trial values

In this case, A has just been converted, since it is the smallest of the trial
values. We shall prove when we recalculate Tiecomputed from 4, its new value
must still be greater than A. At some previous stage, when B was converted
from trial to alive, the values of A, C and D were all trial values, and hence
must have been larger. Then this means that when B was converted from trial
to alive, we had the previous case above, and hence B < Tiecomputed from B <
B+ f; furthermore, since the value at the centre was not chosen as the smallest
trial value, we must have that A < B + f. By the above case, we then have
that B < A < Thecomputed rom A < B + f, and hence the recomputed value
cannot be less than the just converted value of A.

t Recall that ‘alive’ means that their T values are less than A. Here, we are using the
notation that the symbol A stands for both the grid point and its T value.

! We are absorbing the grid size Az into the inverse speed function f.
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C is ‘alive’, A, B and D are ‘trial’, A is the smallest of the trial values
In this case, due to the direction of the upwind differencing, the value at C
is the contributor in the x direction, the acceptance of A does not affect the
recomputation, and the case defaults into the first case above.

The remaining cases are all the same, since the differencing takes the smal-
lest values in each coordinate direction. The proof in three dimensions is
identical.

15.2. Finding the smallest value

The key to an efficient version of the above technique lies in a fast way of
locating the grid point in the narrow band with the smallest value for 7. We
use a variation on a heapsort algorithm, see Press, Flannery, Teukolsky and
Vetterling (1988) and Sedgewick (1988), with the additional feature of back
pointers. In more detail, imagine that the list of narrow band points is initially
sorted in a heapsort so that the smallest member can be easily located. We
store the values of these points in the heapsort, together with their indices
which give their location in the grid structure. We keep a companion array
which points from the two-dimensional grid to the location of that grid point
in the heapsort array. Finding the smallest value is easy. In order to find
the neighbours of that point, we use the pointers from the grid array to the
heapsort structure. The values of the neighbours are then recomputed, and
then the results are bubbled upwards in the heapsort until they reach their
correct locations, at the same time readjusting the pointers in the grid array.
This results in an O(log N) algorithm for the total amount of work, where N
is the number of points in the narrow band. For implementation details and
further application of this technique, see Sethian (1995¢, 1996) and Sethian,
Adalsteinsson and Malladi (1996).

The above technique considered a flat initial interface for which trial values
at the narrow band points could be easily initialized. Suppose we are given
an arbitrary closed curve or surface as the initial location of the front. In
this case, we use the original narrow band level set method to initialize the
problem. First, label all grid points as ‘far away’ and assign them T values
of 00. Then, in a very small neighbourhood around the interface, construct
the signed distance function from the initial hypersurface I". Propagate that
surface both forwards and backwards in time until a layer of grid points is
crossed in each direction, computing the signed crossing times as in Sethian
(1994). Then collect the points with negative crossing times as ‘alive’ points
with 7" value equal to the crossing time, and the points with positive crossing
times as narrow band points with 1" value equal to the positive crossing times.
Then begin the fast marching algorithm.
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16. Other speed functions: when does this method work?

Our fast marching method as designed applied to speed functions F which
depend only on position. In such cases, other forms for the gradient approx-
imation can be used; for example, Rouy and Tourin (1992), namely

. 2
Fj' = max (max(D5T,0), - min(DF*T,0)) " +

2
max (max(Di;yT, 0), — min(D;;yT, O)) . (16.1)

How general is our new technique? Suppose now we consider the more
general case of stationary level set equation:

IVT|F = 1. (16.2)

We begin by rewriting this in the standard form of a static Hamiltonian,
namely

H(T,, T, T.) = 1. (16.3)

We already have a scheme for the case where H = VTI'. Some variations
on this Hamiltonian important in computer vision, such as

H = max(|Te|, [Ty, | Tz]) H = |T:| + [Ty| + | T, (16.4)

may be approximated in a straightforward manner using any of the above
entropy-satisfying approximations to the individual gradients. Our fast march-
ing method will work in these cases. When the speed F depends in a subtle
way on the value of VT (for example, in some problems in etching and de-
position discussed in a later section), the situation is more delicate.

When will the technique work? Here, we present an intuitive perspective;
complete details may be found in Sethian (1996) and Sethian et al. (1996).
Suppose H is convex and always positive (or always negative), and suppose
the approximation to H satisfies two properties:

1 the approximation scheme is consistent

2 at each grid point the scheme only makes use of smaller neighbouring
values when updating the value at that point (this is the upwindness
requirement), and cannot produce a new value which is less than any of
the neighbours.

Then we can expect that our upwind sweeping method will work; searching
for the smallest trial value will provide a consistent way of sweeping through
the mesh and constructing the solution surface T'. Complete details and many
other schemes may be found in Sethian (1996) and Sethian et al. (1996).
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17. Some clarifying comments

The time-dependent level set method and the stationary level set method each
require careful construction of upwind, entropy-satisfying schemes, and make
use of the dynamics and geometry of front propagation analysed in Sethian
(1985). However, we note that the time-dependent level set method advances
the front simultaneously, while the stationary method constructs ‘scaffolding’
to build the time solution surface T one grid point at a time. This means that
the time at which the surface crosses a grid point (that is, its T value) may
be found before other positions of that front at that time are determined. As
such, there is no notion of a time step in the stationary method: one is simply
constructing the stationary surface in an upwind fashion.

This means that if one is attempting to solve a problem in which the speed
of a front depends on the current position of the front (such as in the case
of visibility), or on subtle orientations in the front (such as in sputter yield
problems), it is not clear how to use the stationary method, since the front is
being constructed one grid point at a time.

The stationary method works because we were able to construct a simple
approximation to the gradient. This was possible because the speed function
F did not depend on the orientation of the front, nor on issues like visib-
ility. Thus, returning to our earlier categorization of speed functions, our
fast scheme works in cases where the speed F' only depends on independ-
ent variables, such as in the case of photolithography development. Upwind
entropy-satisfying schemes which can be transported to this fast stationary
scheme for the case of more general speed functions F' are more problematic,
and discussed in detail in Sethian (1996).

To summarize,

e  The stationary method is convenient for problems in which the front
speed depends on independent variables, such as a photoresist rate func-
tion, and only applies if the speed function does not change sign.

o  The time-dependent level set method is designed for more delicate speed
functions, and can accurately evolve fronts under highly complex argu-
ments.

In the next part, we discuss a variety of applications which employ both
the time-dependent level set method and the fast marching method for mono-
tonically advancing fronts.
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PART V: APPLICATIONS

In this part, we present a series of applications of both the time-dependent
level set method and the fast marching level set method to propagating in-
terfaces. This is only a subset of the level set applications in the literature;
throughout, we provide references to many other applications.

18. Geometry

In this section, we consider application of level set methods to problems in
the geometric evolution of curves and surfaces. The motion will depend solely
on local geometric properties such as normal direction and curvature; non-
etheless, this is a fascinating and rich area.

18.1. Curvature flow

Suppose we are given a hypersurface in R™ propagating with some speed F(x).
Previously, we have considered speed functions of the form F(k) = 1 — ex,
where & is the curvature. Let us now focus on a special speed function,
namely F' = —g, where & is the curvature. This corresponds to a geometric
version of the heat equation; large oscillations are immediately smoothed out,
and long-term solutions correspond to dissipation of all information about
the initial state. As we shall see in later sections, curvature motion plays
an important role in many applications such as a modelling term for surface
tension in flexible membranes and a viscous term in physical phenomena.

The remarkable work of Gage and Grayson investigated the motion of a
simple closed curve collapsing under its curvature. First, Gage showed that
any convex curve moving under such a motion remains convex and must
shrink to a point (Gage 1984, Gage and Hamilton 1986). Grayson (1987)
followed this work with a stunning proof that all curves must shrink to a
round point, regardless of their initial shape.

In Fig. 26, we take an odd-shaped initial curve and view this as the zero
level set of a function defined in all of R%2. Here, for illustration, we have
¢ such that ¢ < 0 as black and ¢ > 0 as white, thus the zero level set is
the boundary between the two. As the level curves flow under curvature,
the ensuing motion carries each to a point, which then disappears. In the
evolution of the front, one clearly sees that the large oscillations disappear
quickly, and then, as the front becomes circular, motion slows, and the front
eventually disappears.

In three dimensions, flow under mean curvature does not necessarily result
in a collapse to a sphere. Huisken (1984) showed that convex shapes shrink to
spheres as they collapse, analogous to the result of Gage. However, Grayson
(1989) showed that non-convex shapes may in fact not shrink to a sphere,
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Fig. 26. F(k) = —k.

and provided the counterexample of the dumbbell. A narrow handle of a
dumbbell may have such a high inner radius that the mean curvature of the
saddle point at the neck may still be positive, and hence the neck will pinch
off.

As illustration, in Fig. 27, taken from Chopp and Sethian (1993), we show
two connected dumbbells collapsing under mean curvature. As the intersec-
tion point collapses, the necks break off and leave a remaining ‘pillow’ region
behind. This pillow region collapses as well, and eventually all five regions
disappear.

Finally, what about self-similar shapes? In two dimensions, it is clear that
a circle collapsing under its own curvature remains a circle; this can be seen
by integrating the ordinary differential equation for the changing radius. In
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Fig. 27. Collapse of two-handled dumbbell.

(a) Self-similar cube with holes (b) Self-similar octahedron with holes

Fig. 28. Self-similar shapes.

three dimensions, a sphere is self-similar under mean curvature flow, since
its curvature is always constant. Angenent (1992) proved the existence of
a self-similar torus that preserves the balance between the competing pulls
towards a ring and a sphere.

In order to devise an algorithm to produce self-similar shapes, two things
are required. First, since hypersurfaces get smaller as they move under their
curvature, a mechanism is needed to ‘rescale’ their motion so that the evolu-
tion can be continued towards a possible self-similar shape. Second, a way of
pushing the evolving fronts back towards self-similarity is required. Chopp
has accomplished both in a clever numerical algorithm that produces a family
of self-similar surfaces; see Chopp (1994). His family comes from taking a
regular polyhedron (for example, a cube), and drilling holes in each face. The
resulting figure then evolves according to auxiliary level set equations, which
contain the re-scaling as part of the equation of motion. Two such self-similar
surfaces are shown in Fig. 28.

18.2. Grid generation

Imagine that one is given a closed body, either as a curve in two space di-
mensions, or a surface in three space dimensions. In many situations, one
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wishes to generate a logically rectangular, body-fitted grid around or inside
this body. By logically rectangular, we mean that each node of the grid has
four neighbours (in two dimensions; in three dimensions, there are six neigh-
bours). By body-fitted, we mean that the grid aligns itself with the body so
that one set of coordinate lines matches the body itself. This grid generation
problem is difficult in part because of the competing desires of uniformity in
cell area and mesh orthogonality; we refer the interested reader to Knupp and
Steinberg (1993).

Level set techniques offer an interesting technique for generating such grids.
The idea, as presented in Sethian (1994), is to exploit the geometric nature
of the problem and view the body itself as the initial position of an interface
that must be advanced outwards away from the body. The initial position
of the interface and its position at later times forms one set of grid lines; its
orthogonal set forms the other. The body is propagated outwards with speed
F = 1—e¢k; by finding the zero level set at discrete times, the set of coordinate
lines that encircle the body is found. Construction of transverse lines normal
to the body are obtained by following trajectories of V¢. Additional node
adjustment is possible through application of additional smoothing operators.
Node placement on the boundary and the ensuing exterior/interior grid can
be automatically controlled. For details, see Sethian (1994).

This technique can almost be viewed as a hyperbolic solver. However, by
solving the correct evolution equation for an advancing front, we avoid the
difficulties of shock formation and colliding characteristics that plague most
hyperbolic techniques. User intervention is kept to a minimum; for the most
part, grids are generated automatically without the need to adjust parameters.

In Fig. 29, we show a variety of grids constructed using this level set
approach, starting with relatively smooth grids and ending with a three-
dimensional grid around an indented dumbbell. As can be seen, interior
and exterior grids can be created, with the capability of handling significant
corners and cusps. The grids are automatically created; there has been no
adjustment of parameters in the creation of these different grids.

18.3. Image enhancement and noise removal

The previous sections concerned geometrical motion of a particular hyper-
surface of interest. Next, we turn to a level set problem in which all the level
sets have meaning, and must be evolved.

The goal in this section is to apply some of the level set methodology
to image enhancement and noise removal. To do so, we first need a few
definitions. Define an image to be an intensity map I(x,y) given at each
point of a two-dimensional domain. The range of the function I(z,y) depends
on the type of image: for monochrome images, the range is {0,1}; for grey-
scale images, I(z,y) is a function mapping into {0, 1,...,255}; and for colour
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Fig. 29. Body-fitted grids generated using level set approach.
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Fig. 30. An image I(z,y) with noise.

images, I(z,y) is a vector-valued function into some colour-space, typically
either RGB or HSI.

Given such an image, two goals are to remove noise from the image (see
Fig. 30) without sacrificing useful detail, and to enhance or highlight certain
features. A straightforward and widely used approach is the Gaussian filter,
in which both 1-D and 2-D signals are smoothed by convolving them with
a Gaussian kernel; the degree of blurring is controlled by the characteristic
width of the Gaussian filter. If the image is viewed as a surface, this convolu-
tion will reduce spikes as they blend into the background values. In this sense,
the Gaussian removes noise. However, the Gaussian is an isotropic operator;
it smoothes in all directions, and sharp boundaries will also be blurred. The
goal is to improve upon this basic idea and remove noise without being forced
into too much blurring. A variety of techniques has been introduced to im-
prove upon this basic idea, including anisotropic diffusion schemes, which
perform intraregion smoothing in preference to interregion smoothing (see
Perona and Malik (1990)), as well as Wiener filters, and wavelet schemes.

Alvarez, Lions and Morel (1992) introduced a significant advancement in
noise removal by employing, in part, some of the above ideas about curvature
flow and level set equations. Consider the equation

I, =F|VI h F=V VIy_ 18.1

t = F|VI|  where = -(W>—n. (18.1)
This is our standard curvature evolution equation. An attractive quality of
this motion is that sharp boundaries are preserved: smoothing takes place
inside a region, but not across region boundaries. Of course, as shown by
Grayson’s theorem, eventually all information is removed as each contour
shrinks to zero and vanishes.
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An alternative approach is due to Rudin, Osher and Fatemi (1992). They
take a total variation approach to the problem, which leads to a level set meth-
odology and a very similar curvature-based speed function, namely F'(k) =
k/|I]; see also Osher and Rudin (1990). Following these works, a variation on
these two approaches was produced by Sapiro and Tannenbaum (1993b). In
that work, a speed function of the form F(x) = x!/3 was employed. In each
of these schemes, all information is eventually removed through continued
application of the scheme. Thus, a ‘stopping criterion’ is required.

A recent level set scheme for noise removal and image enhancement was
introduced by Malladi and Sethian (1995) and Malladi and Sethian (1996a).
The scheme results from returning to the original ideas of curvature flow, and
exploiting a ‘min/max’ function, which correctly selects the optimal motion
to remove noise. It has two highly desirable features:

1 there is an intrinsic, adjustable definition of scale within the algorithm,
such that all noise below that level is removed, and all features above
that level are preserved

2 the algorithm stops automatically once the sub-scale noise is removed;
continued application of the scheme produces no change.

These two features are quite powerful, and lead to a series of open questions
about the morphology of shape and asymptotics of scale-removal; for details,
see Malladi and Sethian (1996a).

The min/maz flow

Consider the equation
¢ = F|V¢|. (18.2)

A curve collapsing under its curvature will correspond to speed F' = . Now,
consider two variations on the basic curvature flow, namely

F(k) = min(k, 0.0) F(k) = max(k,0.0).

Here, we have chosen the negative of the signed distance in the interior, and
the positive sign in the exterior region. The effect of flow under F(k) =
min(k, 0.0) is to allow the inward concave fingers to grow outwards, while
suppressing the motion of the outward convex regions. Thus, the motion
halts as soon as the convex hull is obtained. Conversely, the effect of flow
under F'(k) = max(k,0.0) is to allow the outward regions to grow inwards
while suppressing the motion of the inward concave regions. However, once
the shape becomes fully convex, the curvature is always positive and the flow
becomes the same as regular curvature flow.
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Our goal is to select the correct choice of flow that smoothes out small
oscillations, but maintains the essential properties of the shape. In order to
do so, we discuss the idea of the min/max switch.

Consider the following speed function, introduced in Malladi and Sethian
(1995) and refined considerably in Malladi and Sethian (1996a):

. . R=kh
(Stencil=k _ { mll’l(/i, O) if Ave¢(1v ) <90 (18 3)

min/max ) max(k,0) if A"eg@% 20,

where Aveg(igg is defined as the average value of ¢ in a disk of radius R = kh
centred around the point (z,y). Here, h is the step size of the grid. Thus,
given a StencilRadius k, the above yields a speed function that depends on
the value of ¢ at the point (z,y), the average value of ¢ in neighbourhood of
a given size, and the value of the curvature of the level curve going through
(z,9).

We can examine this speed function in some detail. For ease of exposition,
consider a black region on a white background, chosen so that the interior
has a negative value of ¢ and the exterior a positive value.

StencilRadius k& = 0 If the radius R = 0 (k = 0), then choice of min(k, 0)
or max(k,0) depends only on the value of ¢. All the level curves in the
black region will attempt to form their convex hull, when seen from the
black side, and all the level curves in the white region will attempt to
form their convex hull. The net effect will be no motion of the zero level
set itself, and the boundary will not move.

StencilRadius k = 1 If the average is taken over a stencil of radius kh,
then some movement of the zero level corresponding to the boundary
is possible. If there are some oscillations in the front boundary on the
order of one or two pixels, then the average value of ¢ at the point (z,y)
can have a different sign from the value at (z,y) itself. In this case,
the flow will act as if it were selected from the ‘other side’, and some
motion will be allowed until these first-order oscillations are removed,
and a balance between the two sides is again reached. Once this balance
is reached, further motion is suppressed.

StencilRadius k > 1 By taking averages over a larger stencil, larger amounts
of smoothing are applied to the boundary. In other words, decisions
about where features belong are based on larger and larger perspect-
ives. Once features on the order of size k are removed from the bound-
ary, balance is reached and the flow stops automatically. As an example,
let kK = 00. Since the average will compute to a value close to the back-
ground colour, on this scale all structures are insignificant, and the max
flow will be chosen everywhere, forcing the boundary to disappear.
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(a) Initial boundary (b) Min/max flow: stencil
‘noisy’ shape radius = 0; (T = o0)

(¢) Min/max flow: stencil (d) Continued min/max flow:
radius = 1; (T = o0) stencil radius = 2; (T = o0)

Fig. 31. Motion of star-shaped region with noise under min/max flow at various
stencil levels.

To show the results of this hierarchical flow, we start with an initial shape
in Fig. 31a and first perform the min/max flow until steady state is reached
with stencil size zero in Fig. 31b. In this case, the steady state is achieved
immediately, and the final state is the same as the initial state. Min/max flow
is then performed until steady state is achieved with stencil size k = 1 in Fig.
31c, and then min/max flow is again applied with a larger stencil until steady
state is achieved in Fig. 31d.

These results can be summarized as follows:

e  the min/max flow switch selects the correct motion to diffuse the small-
scale pixel notches into the boundary

e  the larger, global properties of the shape are maintained
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e  furthermore, and equally importantly, the flow stops once these notches
are diffused into the main structure

e  edge definition is maintained and, in some global sense, the area inside
the boundary is preserved

e  the noise removal capabilities of the min/max flow are scale-dependent,
and can be hierarchically adjusted

e  the scheme requires only a nearest neighbour stencil evaluation.

Eztension of min/maz scheme to grey-scale, texture, and colour images

The above technique applies to monochrome images. An extension to grey-
scale images can be made by replacing the fixed threshold test value of 0 with
a value that depends on the local neighbourhood. As designed in Malladi and
Sethian (1995), let Tipreshola be the average value of the intensity obtained in
the direction perpendicular to the gradient direction. Note that since the
direction perpendicular to the gradient is tangent to the iso-intensity contour
through (z, y), the two points used to compute are either in the same region,
or the point (z,y) is an inflection point, in which the curvature is in fact zero
and the min/max flow will always yield zero. By choosing a larger stencil we
mean computing this tangential average over endpoints located further apart.

Formally then, our min/max scheme becomes:

. max(k,0) if Average(z,y) < Tinresho
I et R

min(x,0) otherwise.

Further details about this scheme may be found in Malladi and Sethian
(1996a). In that work, these techniques are applied to a wide range of im-
ages, including salt-and-pepper, multiplicative and Gaussian noise applied to
monochrome, grey-scale, textured, and colour images.

Results

In this section, we provide a few examples of this min/max flow. In Fig. 32,
50% and 80% grey-scale noise is added to a monochrome image of a hand-
written character. The noise is added as follows: X% noise means that at
X% of the pixels, the given value is replaced with a number chosen with
uniform distribution between 0 and 255. Here, the min/max switch function
is taken relative to the value 127.5 rather than zero. The restored figures are
converged. Continued application of the scheme yields almost no change in
the results.

Next, salt-and-pepper grey-scale noise is removed from a grey-scale image.
The results are obtained as follows. Begin with 40% noise in Fig. 33a. First,
the min/max flow from equation (18.4) is applied until a steady state is
reached (Fig. 33b). This removes most of the noise. The scheme is then
continued with a larger threshold stencil for the threshold to remove further
noise (Fig. 33c). For the larger stencil, we compute the average over a larger
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Fig. 32. Image restoration of binary images with grey-scale salt-and-pepper noise
using min/max flow: restored shapes are final shape obtained (T’ = oo).

(a) 40% noise (b) Min/max flow (¢) Cont: larger stencil

Fig. 33. Min/max flow applied to grey-scale image.

disk and calculate the threshold value Tty eshold Using a correspondingly longer
tangent vector.

Finally, we show the effect of this scheme applied to an image upon which
100% Gaussian grey-scale noise has been superimposed; a random compon-
ent drawn from a Gaussian distribution with mean zero is added to each
(every) pixel. Fig. 34 shows the ‘noisy’ original together with the reconstruc-
ted min/max flow image.

19. Combustion, crystal growth, and two-fluid flow

In this section, we consider some applications of the level set methodology
to a large and challenging class of interface problems. These problems are
characterized by physical phenomena in which the front acts as a boundary
condition to a partial differential equation, and the solution of this equation
controls the motion of the front. In combustion problems, the interface is a
flame, and both exothermic expansion along the front and flame-induced vor-
ticity drive the underlying fluid mechanics. In crystal growth and dendritic
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Original Reconstructed

Fig. 34. Continuous Gaussian noise added to image.

formation, the interface is the solid/liquid boundary, and is driven by a jump
condition related to heat release along the interface. In two-fluid problems,
the interface represents the boundary between two immiscible fluids of sig-
nificantly different densities and/or viscosities, and the surface tension along
this interface plays a significant role in the motion of the fluids.

From an algorithmic perspective, the significant level set issue is that in-
formation about the speed of the front itself must be somehow transferred to
the Eulerian framework that updates the level set function at the fixed grid
points. This is a significant challenge for two reasons.

e In many situations, the interface velocity is determined by the interaction
of local geometric quantities of the front itself (such as curvature) with
global variables on either side of the interface (for example, jumps in
velocity, heat, or concentration of species). If these global variables are
calculated on a grid, it may be difficult to extend the values to the front
itself where they are required to evaluate the speed function F. However,
these quantities are only known at grid points, not at the front itself,
where the relationship has meaning.

e [t may be very difficult to extend this interface velocity back to the grid
points (that is, to the other level sets). This problem, known as the
extension problem (see Adalsteinsson and Sethian (19956, 1995¢)) must
be solved in order for the level set method to work; some mechanism of
updating the grid points in the neighbourhood of the zero level set is
required.
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In this section, we discuss three application areas where these problems
have been solved. The common link in these sections is the presence of a
term in the equation represented by a Dirac delta function along the interface.
The interested reader is referred to the literature cited below for a detailed
description of the algorithms and results.

19.1. Turbulent combustion of flames and vorticity, exothermicity, flame
stretch and wrinkling

In Rhee et al. (1995), a flame is viewed as an infinitely thin reaction zone,
separating two regions of different but constant densities. The hydrodynamic
flow field is two dimensional and inviscid, and the Mach number is vanishingly
small. This corresponds to the equations of zero Mach number combustion,
introduced in Majda and Sethian (1984). The flame propagates into the
unburnt gas at a prescribed flame speed S,, which depends on the local
curvature, due to the focusing/de-focusing of heating effects as a function of
flame shape.

As the reactants are converted to products (that is, as the material makes
the transition from ‘unburnt’ to ‘burnt’), the local fluid undergoes volume
increase known as exothermic expansion, associated with the density jump.
At the same time, pressure gradients tangential to the flame cause different
accelerations in the light and heavy gases. This causes a production of vorti-
city (known as baroclinic torque) across the flame, since the pressure gradient
is not always aligned with the density gradient. Together, the burning of the
flame acts as source of vorticity and volume for the underlying hydrodynamic
field, both of which in turn affect the evolution of the flame interface.

This model presents a significant challenge for a level set method. The
flame is tracked by identifying the flame interface as the zero level set of the
level set function. The curvature is determined using the expression given
in equation (11.1). The vortical field is represented by a collection of vortex
blobs as in vortex method; see Chorin (1973) and Sethian (1991). The exo-
thermic field is determined by solving a Poisson’s equation on the underlying
grid with right-hand side given by smearing the Dirac delta function to the
neighbouring grid points. The no-flow boundary is satisfied by the addition
of a potential flow that exactly cancels the existing flow field. Finally, the
tangential stretch component is evaluated by tracing the values of the tan-
gential velocity from the given position backwards along the normal to the
front to evaluate the change in tangential velocity. For complete details, see
Rhee et al. (1995).

Fig. 35, taken from Rhee et al. (1995), shows two results from this al-
gorithm. We compare an anchored flame, with upstream turbulence imposed
by a statistical distribution of positive and negative vortices. The goal here
is to understand the effect of exothermicity and flame-induced vorticity on
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(a) Flame with exothermicity (b) Flame with exothermicity and vorticity

Fig. 35. Comparison of flame brush.

the flame wrinkling and stability. In Fig. 35a, we show an anchored flame in
the oncoming turbulent field; here, different time snapshots are superimposed
upon each other to show the flame ‘brush’. In Fig. 35b, we turn on the effects
of both volume expansion (a large density jump) and vorticity generation
along the flame front. The resulting flow field generates a significantly wider
flame brush, as the vorticity induces flame wrinkling and the exothermicity
affects the surrounding flow field.

In the above application of the level method, the front acted as source of
volume and vorticity. In the next application, developed in Sethian and Strain
(1992), the interface motion is controlled by a complex jump condition.

19.2. Crystal growth and dendritic solidification

Imagine a container filled with a liquid such as water, which has been so
smoothly and uniformly cooled below its freezing point that the liquid does
not freeze. The system is now in a ‘metastable’ state, where a small dis-
turbance such as dropping a tiny seed of the solid phase into the liquid will
initiate a rapid and unstable process known as dendritic solidification. The
solid phase will grow from the seed by sending out branching fingers into
the distant cooler liquid nearer the undercooled wall. This growth process is
unstable in the sense that small perturbations of the initial data can produce
large changes in the time-dependent solid/liquid boundary.

Mathematically, this phenomenon can be modelled by a moving bound-
ary problem. The temperature field satisfies a heat equation in each phase,
coupled through two boundary conditions on the unknown moving solid/liquid
boundary, as well as initial and boundary conditions. First, the normal ve-
locity of the interface depends on the jump in the normal component of the
heat flux across the interface. Second, the temperature at the interface itself
depends on the local curvature and the velocity. Thus, the goal is to incor-
porate the influence of the front on the heat solvers across the interface. For
further details, see Cahn and Hilliard (1958) and Mullins and Sekerka (1963).
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A variety of techniques is possible to approximate numerically these equa-
tions of motion. One approach is to solve the heat equation in each phase
and try to move the boundary so that the two boundary conditions are satis-
fied. Another approach is to recast the equations of motion as a single integral
equation on the moving boundary and solve the integral equation numerically.

In Sethian and Strain (1992) a hybrid level set/boundary integral approach
was developed, which includes the effects of undercooling, crystalline aniso-
tropy, surface tension, molecular kinetics, and initial conditions. The central
idea is to exploit a transformation due to Strain (1989), which converts the
equations of motion into a single, history-dependent boundary integral equa-
tion on the solid/liquid boundary, given by

¢
en(n)/@—l—ev(n)V-f—UnLH/ » )K(:c,a:',t—t') V(z',¢')dz’ dt' = 0 (19.1)
0 24

for all  on the interface I'(t). Here, K is the heat kernel, €, and ey are
constants, U is the temperature, V' is the normal velocity of the interface,
and H is the latent heat of solidification. Note that the velocity V' depends
not only on the position of the front but also on its previous history. Thus,
as shown in Strain (1989), information about the temperature off the front is
stored in the previous history of the boundary. This can be evaluated by a
combination of fast techniques; see Strain (1988, 1989, 1990) and Greengard
and Strain (1990).

In Fig. 36, we show one example from Sethian and Strain (1992) in which
the effect of changing the latent heat of solidification H is analysed. Since
the latent heat controls the balance between the pure geometric effects and
the solution of the history-dependent heat integral, increasing H puts more
emphasis on the heat equation/jump conditions. Calculations are performed
on a unit box, with a constant undercooling on the side walls of ug = —1. The
kinetic coefficient is €y = .001; the surface tension coefficient is ¢, = .001;
there is no crystalline anisotropy. The initial shape was a perturbed circle.
A 96 x 96 mesh is used with time step At = .00125. The calculations are all
plotted at the same time.

In the calculations shown, H is varied smoothly. In Fig. 36a, H = .75; the
dominance of geometric motion serves to create a rapidly evolving boundary
that is mostly smooth. H is increased in each successive figure, ending with
H = 1.0 in Fig. 36d. As the latent heat of solidification is increased, the
growing limbs expand outwards less smoothly, and instead develop flat ends.
These flat ends are unstable and serve as precursors to tip splitting. We also
note that the influence of the heat integral slows down the evolving bound-
ary, as witnessed by the fact that all the plots are given at the same time.
Presumably, increasing latent heat decreases the most unstable wavelength,
as described by linear stability theory. The final shape shows side-branching,
tip splitting, and the strong effects of the side walls.
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Fig. 36. Effect of changing latent heat.

20. Two-phase flow

In this section, we discuss level set methods applied to problems of two-phase
flow.

Two early applications of fluid dynamical problems using level set methods
to track the interface are the projection method calculations of compressible
gas dynamics of Mulder, Osher and Sethian (1992) and the combustion cal-
culations of Zhu and Sethian (1992). Each viewed the interface as the zero
level set, and tracked this interface as a method of separating the two regions.

Firstly, in Mulder et al. (1992) the evolution of rising bubbles in com-
pressible gas dynamics was studied. The level set equation for the evolving
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interface separating two fluids of differing densities was incorporated inside
the conservation equations for the fluid dynamics. Both the Kelvin—Helmholtz
instability and the Rayleigh—Taylor instability were studied; the density ratio
was about 30 to 4, and both gases were treated as perfect gases. Considerable
discussion was devoted to the advantages and disadvantages of embedding the
level set equation as an additional conservation law.

Next, in the combustion calculations presented in Zhu and Sethian (1992),
the interface represented a flame propagating from the burnt region into the
unburnt region. Unlike the above calculations concerning flame stability in
flame holders, in these calculations the flame was viewed as a ‘cold flame’;
that is, the hydrodynamic flow field affected the position of the flame, but
the advancing flame did not in turn affect the hydrodynamic field. In these
calculations, the hydrodynamic field was computed using Chorin’s projection
method (see Chorin (1968)), coupled to the level set approach. The problem
under study was the evolution of a flame inside a swirling two-dimensional
chamber; and the results showed the intermixing that can occur, the creating
of pockets of unburnt fuel surrounded by burnt pockets.

These two works were followed by the work of Chang, Hou, Merriman and
Osher (1994) and Sussman et al. (1994), using projection methods coupled to
the level set equation to study the motion of incompressible, immiscible fluids
where steep gradients in density and viscosity exist across the interface, and
the role of surface tension is crucial.

There are three key aspects of these fascinating calculations. First, us-
ing a formulation first developed by Brackbill, Kothe and Zemach (1992),
the surface tension generated by the level set curvature expression can be
smoothed using a mollified delta function to the neighbouring grid points;
this smoothing denotes a ‘thickness’ for the interface layer, and allows the
role of surface tension to be transported to the grid for inclusion in the pro-
jection method. Second, the contribution due to surface tension is converted
from a delta function to the Heaviside formulation, and incorporated as such
into the projection step. This eliminates the standard numerical instabilities
and oscillations that plague attempts to directly difference the delta function
itself. Third, the level set lines cease to correspond to the distance function
due to the significant variation in fluid velocities across the interface; to re-
distribute the level set contours, the re-initialization idea using iteration on
the sign of ¢ described in equation (13.1) was developed.

The calculations performed using these techniques show a wide range of
applications concerning falling drops, colliding drops, and the role of surface
tension, and open the door to a range of important fluid dynamics applica-
tions. We refer the reader to Sussman et al. (1994) and Chang et al. (1994)
for further details.
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21. Constrained problems: minimal surfaces and shape
recovery

Another set of applications include problems in which the motion of the front
is constrained by external boundary conditions. In this section, we briefly
review some work on the construction of minimal surfaces and shape recovery
from images.

21.1. Minimal surfaces

The basic problem may be stated as follows. Consider a closed curve I'(s)
in R3. The goal is to construct a membrane with boundary I' and mean
curvature zero. In some cases, this can be achieved as follows. Given the
bounding wire frame I', consider some initial surface S(t = 0) whose boundary
isT". Let S(¢) be the family of surfaces parametrized by ¢ obtained by allowing
the initial surface S(t = 0) to evolve under mean curvature, with boundary
always given by I'. Defining the surface S by S = limy_,o, S(t), one expects
that the surface S will be a minimal surface for the boundary I". Several
computational approaches exist to construct such minimal surfaces based on
this approach, including Brakke’s Surface Evolver program (Brakke 1990).
A level set approach to this problem rests on embedding the motion of
the surface towards its minimal energy as the zero level set of a higher-
dimensional function. Thus, given an initial surface S(0) passing through
[, construct a family of neighbouring surfaces by viewing S(0) as the zero
level set of some function ¢ over all of R3. Using the level set equation (3.5),

evolve ¢ according to the speed law F(k) = —k. Then a possible minimal
surface S will be given by
S = lim {z : ¢(z,t) = 0}. (21.1)
t—00

The difficult challenge with the above approach is to ensure that the evolving
zero level set always remains attached to the boundary I'. This is accom-
plished in Chopp (1993), by creating boundary conditions of grid points
closest to the wire frame linking together the neighbouring values of ¢, to
force the level set ¢ = 0 through I'. Thus we obtain a constrained level set
problem: we track mean curvature flow requiring that the evolving zero level
set remains attached to the front.

In Fig. 37, taken from Chopp (1993), the minimal surface spanning two
rings each of radius 0.5 and at positions x = +.277259 is computed. A
cylinder spanning the two rings is taken as the initial level set ¢ = 0. A
27 X 47 x 47 mesh with space step 0.025 is used. The final shape is shown in
Fig. 37.
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Fig. 37. Minimal surface: catenoid.

Time = 0.0 Time =0.41 Time = 0.42 Time = 0.50
Fig. 38. Splitting of catenoid.

Next, in Fig. 38 (again taken from Chopp (1993)), this same problem is
computed, but the rings are placed far enough apart so that a catenoid solu-
tion cannot exist. Starting with a cylinder as the initial surface, the evolution
of this surface is computed as it collapses under mean curvature while re-
maining attached to the two wire frames. As the surface evolves, the middle
pinches off and the surface splits into two surfaces, each of which quickly
collapses into a disk. The final shape of a disk spanning each ring is indeed a
minimal surface for this problem. This example illustrates one of the virtues
of the level set approach. No special cutting or ad hoc decisions are employed
to decide when to break the surface. Instead, viewing the zero level set as
but one member of a family of flowing surfaces allows this smooth transition.
Further results may be found in Chopp (1993).

21.2. Shape detection/recovery

Imagine that one is given an image. The goal in shape detection/recoveryis to
extract a particular shape from that image; here, ‘extract’ means to produce
a mathematical description of the shape, which can be used in a variety of
forms. The work on level set techniques applied to shape recovery described
here was first presented in Malladi et al. (1994); further work using the level
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set scheme in the context of shape recovery may be found in Malladi, Sethian
and Vemuri (1995b), Malladi and Sethian (1994), Malladi, Adalsteinsson and
Sethian (1995a) and Caselles, Catte, Coll and Dibos (n.d.). We refer the
interested reader to those papers for motivation, details, and a large number
of examples.

Imagine that we are given an image, with the goal of isolating a shape
within the image. Our approach (see Malladi et al. (1994)) is motivated by
the active force contour/snake approach to shape recovery given by Kass,
Witkin and Terzopoulos (1988). Consider a speed function of the form 1 —ex
(1 + ex), where € is a constant. As discussed earlier, the constant acts as
an advection term, and is independent of the moving front’s geometry. The
front uniformly expands (contracts) with speed 1 (—1) depending on the sign,
and is analogous to the inflation force defined in Cohen (1991). The diffusive
second term €K depends on the geometry of the front and smooths out the
high curvature regions of the front. It has the same regularizing effect on the
front as the internal deformation energy term in thin-plate-membrane splines
(Kass et al. 1988).

Our goal now is to define a speed function from the image data that acts
as a halting criterion for this speed function. We multiply the above speed
function by the term

1

where the expression G, * I denotes the image convolved with a Gaussian
smoothing filter whose characteristic width is o. The term |VG, * I(z,y)|
is essentially zero except where the image gradient changes rapidly, in which
case the value becomes large. Thus, the filter k;(z,y) is close to unity away
from boundaries, and drops to zero near sharp changes in the image gradient,
which presumably corresponds to the edge of the desired shape. In other
words, the filter function anticipates steep changes in the image gradient, and
stops the evolving front from passing out of the desired region.

Thus the algorithm works as follows. A small front (typically a circle)
is started inside the desired region. This front then grows outwards and is
stopped at the shape boundary by the filter term, which drops the value of
the speed function F' to zero.

There are several desirable aspects of this approach:

e  the initial front can consist of many fronts; due to the topological capab-
ilities of the level set method, these fronts will merge into a single front
as it grows into the particular shape

e the front can follow intricate twists and turns in the desired boundary

e  use of narrow band techniques makes the algorithm very fast

e  the technique can be used to extract three-dimensional shapes as well
by initializing in a ball inside the desired region
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(a) Initialization (b) Intermediate stage (¢) End of stage one

(d) Intermediate stage two (e) End of stage two
Fig. 39. Shape extraction from heart data.

e  small isolated spots of noise where the image gradient changes substan-
tially are ignored; the front propagates around these points and closes
back in on itself and then disappears.

As a demonstration, level set shape recovery techniques are applied to the
difficult problem of extracting images of the left and right ventricles of the
heart. In these calculations, taken from Malladi and Sethian (19965), the
problem is initialized by simultaneously tagging both the left and the right
ventricle; the right ventricle is found by the evolving front, as is the left
ventricle. Note that in the evolution of the right ventricle front, the papillary
muscle is also found; see Fig. 39. This feature is obtained by initializing with
a single contour, enclosing the papillary muscle and separating into an inner
ring and outer ring. After the outer walls of the left and right ventricles are
recovered, the outer wall of the right ventricle is extracted; this is done by
temporarily relaxing the stopping criterion, and allowing the front to move
past the inner wall of the right ventricle. Once this occurs, the stopping
criterion is turned back on, and the front expands until the outer wall is
found.
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This technique for shape detection/recovery can be performed in three
dimensions if three-dimensional data is available. For details of this and
related work, see Malladi et al. (1994), Malladi et al. (1995b) and Malladi
and Sethian (1996b).

22. Applications of the fast marching level set method

In the case of a monotonically advancing front whose speed in the normal
direction depends only on position, we have previously seen that this can be
converted into a stationary time problem. Furthermore, we have developed a
fast marching algorithm for solving the Eikonal equation associated with this
problem. Here, we show two applications of this technique.

22.1. Shape-from-shading

Suppose we illuminate a non-self-shadowing surface from a single point light
source. At each point of the surface, one can define the brightness map I
which depends on the reflectivity of the surface and the angle between the
incoming light ray and the surface normal. Points of the surface where the
normal is parallel to the incoming beam are brightest; those where the normal
is almost orthogonal are darkest (again, we rule out surfaces that are self-
shadowing). The goal of shape-from-shading is to reconstruct the surface from
its brightness function I.

We point out right away that the problem as posed does not have a unique
solution. For example, imagine a beam coming straight down; it is impossible
to differentiate a surface from its mirror image from the brightness function.
That is, a deep valley could also be a mountain peak. Other ambiguities
can exist, we refer the reader to Rouy and Tourin (1992) and Kimmel and
Bruckstein (1992). Nonetheless, in its simplest form the shape-from-shading
problem provides a simple example of an Eikonal equation that can be solved
using our fast marching level set method.

We begin by considering a surface T'(x, y); the surface normal is then given
by

(_Txa ‘Tya 1)

T vVTE A )R

(22.1)

Let (o, B,7) be the direction from the light source. In the simplest case of
a Lambertian surface, the brightness map is given in a very simple form by

I(z,y) = (a,8,7) - n. (22.2)

Thus, the shape-from-shading problem is to reconstruct the surface T'(z,y)
given the brightness map I(z,y).
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(a) Original (b) Brightness (c) Reconstructed

Fig. 40. Shape-from-shading reconstruction of paraboloid surface.

Consider the simplest case, namely that in which the light comes from
straight down. Then the light source vector is (0,0, 1), and we have

1

I(z,y) = Zlv_TW (22.3)

Rearranging terms, we then have an Fikonal equation for the surface, namely

/1

where n 1s the normal to the surface. We still need initial conditions for this
problem. Let us imagine that at extrema of T' we know the values of T. Then
we can construct a viable solution surface using our fast marching method.

To demonstrate, we start with a given surface, first compute the brightness
map I, and then reconstruct the surface by solving the above Eikonal equation.
In Fig. 40, we show a paraboloid surface of the form T = 3. — 3(x? + y?).
In Fig. 40a we show the original surface, in Fig. 40b we show the brightness
map I(z,y), and in Fig. 40c we show the reconstructed surface. This surface
is ‘built’ by setting T = 3 at the point where the maximum is obtained, and
then solving the Eikonal equation.

As a more complex example, we use a double Gaussian function of the form

T(z,y) = 30~ (@7 +y%) _ 9,—20((z~.05)?+(y—.05)?) (22.5)

Once again, we compute the brightness map and then reconstruct the surface;
see Fig. 41.

We have barely touched the topic of shape-from-shading; in the case of
multiple extrema and non-vertical light sources, more care must be taken,
and we refer the interested reader to the above sources. Nonetheless, the fast
marching level set algorithm is extremely effective for these problems.
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(a) Original (b) Brightness {c) Reconstructed

Fig. 41. Shape-from-shading reconstruction of double Gaussian surface.

22.2. Photolithography development

One component process in the manufacturing of microchips is the stage of
lithography development; see Section 17. In this process, the resist properties
of a material have been altered due to exposure to a beam which has been
partially blocked by a pattern mask. The material is then ‘developed’, which
means the material with less resistivity is etched away. While the process is
discussed in more detail in the next section, at this point we simply note that
the problem reduces to that of following an initially plane interface propagat-
ing downwards in three dimensions, where the speed in the normal direction
is given as a supplied rate function at each point. The speed F = F(x,y, z)
depends only on position; however, it may change extremely rapidly. The
goal in lithography development is to track this evolving front. In order to
develop realistic structures in three-dimensional development profiles, a grid
of size 300 x 300 x 100 is not unreasonable; hence a fast algorithm is required
to perform the development step.

Start with a flat profile at height z = 1 in the unit cube centred at (.5, .5, .5)
and follow the evolution of the interface downwards with speed given by the
model Gaussian rate function

F(z,y,2) = e 8 (cos?(122) + .01), (22.6)

where r = \/(z — .5)2 + (y — .5)2). This rate function F' corresponds to the
effect of standing waves which change the resist properties of the material,
and causes sharp undulations and turns in the evolving profile. In Fig. 42, we
show the profile etched out by such an initial state; the calculation is carried
out until T' = 10.

In Fig. 43, we give timings for a parameter study on a SparclO for the
speed function F = e=%4(")(cos?(6z) + .01). We note that loading the file
containing the model Gaussian rate function F' is a significant proportion of
the total compute time.
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Fig. 42. Lithographic development on 50 x 50 x 50 grid.

Grid size | Time to load rate file Time to propagate front Total time

50 x 50 x 50 0.1 secs 0.7 secs 0.8 secs
100 x 100 x 100 1.2 secs 8.2 secs 9.4 secs
150 x 150 x 150 3.9 secs 37.8 secs 41.7 secs
200 x 200 x 200 9.0 secs 80.0 secs 89 secs

Fig. 43. Timings for development to T=10: Sparc 10.

Further details of the application of our fast marching level set method may
be found in Sethian (1995¢, 1996) and Sethian et al. (1996).

23. A final example: etching and deposition for the
microfabrication of semiconductor devices

23.1. Background

A goal of numerical simulations in microfabrication of semiconductor devices
is to model the process by which silicon devices are manufactured. Here, we
briefly summarize the stages involved. First, a single crystal ingot of silicon
is extracted from molten pure silicon. This silicon ingot is then sliced into
several hundred thin wafers, each of which is then polished to a smooth fin-
ish. A thin crystalline layer is then oxidized, a light sensitive ‘photoresist’
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is applied, and then the wafer is covered with a pattern mask that shields
part of the photoresist. This pattern mask contains the layout of the circuit
itself. Under exposure to a light or an electron beam, the exposed photoresist
polymerizes and hardens, leaving an unexposed material which is then etched
away in a dry etch process, revealing a bare silicon dioxide layer. lonized
impurity atoms such as boron, phosphorus and argon are then implanted into
the pattern of the exposed silicon wafer, and silicon dioxide is deposited at
reduced pressure in a plasma discharge from gas mixtures at a low temper-
ature. Finally, thin films such as aluminium are deposited by processes such
as plasma sputtering, and contacts to the electrical components and compon-
ent interconnections are established. The result is a device that carries the
desired electrical properties.

The above processes produce considerable change in the surface profile as
it undergoes the stages of etching, deposition, and photolithography. This
problem is known as the ‘surface topography problem’ in microfabrication,
and is controlled by a large collection of physical effects, including the vis-
ibility of the etching/deposition source at each point of the evolving profile,
surface diffusion along the front, non-convex sputter laws that produce fa-
ceting, shocks and rarefactions, material-dependent discontinuous etch rates,
and masking profiles.

The underlying physical effects involved in etching, deposition and litho-
graphy are quite complex; excellent reviews are due to Neureuther and his
group: see Helmsen (1994), Scheckler (1991), Scheckler, Toh, Hoffstetter and
Neureuther (1991), Toh (1990) and Toh and Neureuther (1991), as well as
Cale and Raupp (1990a, 19905, 1990c), McVittie, Rey, Bariya et al. (1991)
and Rey, Cheng, McVittie and Saraswat (1991). The effects may be summar-
ized briefly as follows.

Deposition Particles are deposited on the surface, which causes build-up
in the profile. The particles may either isotropically condense from the
surroundings (known as chemical or ‘wet’ deposition), or be deposited
from a source. In the latter case, we envision particles leaving the source
and depositing on the surface; the main advantage of this approach is
increased control over the directionality of surface deposition. The rate
of deposition, and hence growth of the layer, may depend on source
masking, visibility effects between the source and surface point, angle-
dependent flux distribution of source particles, the angle of incidence
of the particles relative to the surface normal direction, reflection of
deposited particles, and surface diffusion effects.

Etching Particles remove material from the evolving profile boundary. The
material may be isotropically removed, as in chemical or ‘wet’ etching, or
chipped away through reactive ion etching, also known as ‘ion milling’.
Similar to deposition, the main advantage of reactive ion etching is en-
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hanced directionality, which becomes increasingly important as device
sizes decrease substantially and etching must proceed in vertical direc-
tions without affecting adjacent features. The total etch rate consists of
an ion-assisted rate and a purely chemical etch rate due to etching by
neutral radicals, which may still have a directional component. As in
the above, the total etch rate due to wet and directional milling effects
can depend on source masking, visibility effects between the source and
surface point, angle-dependent flux distributions of source particles, the
angle of incidence of the particles relative to the surface, reflection/re-
emission of particles, and surface diffusion effects.

Lithography As discussed earlier, the underlying material is treated by an
electromagnetic wave that alters the resist property of the material. The
aerial image is found, which then determines the amount of crosslinking
at each point in the material, which then produces the etch/resist rate
at each point of the material. A profile is then etched into the material,
where the speed of the profile in its normal direction at any point is
given by the underlying etch rate. The key factors that determine the
evolving shape are the etch/resist profile and masking effects.

In the final analysis, the above reduces to our familiar problem of track-
ing the boundary of a moving interface moving under a speed function F'.
Abstractly, we may write

F= FDeposition/Etching + FLithography- (231)

Of course, all effects do not take place at once; however, the design of the nu-
merical algorithm allows various combinations of terms to be ‘turned on’ dur-
ing any time step of the surface advancement. For details and additional cal-
culations of level set methods applied to microfabrication, see Adalsteinsson
and Sethian (19955, 1995¢, 1996).

23.2. Results

FEtching/deposition

We begin in Fig. 44 with a deposition source above a trench, where deposition
material is emitted from a line source from the solid line above the trench. In
this experiment, the deposition rate is the same in all directions. The effects of
shadowing are considered. Fig. 44a shows results for 40 computational cells
along the width of the computed region (between the two vertical dashed
lines); Fig. 44b has 80 cells, and Fig. 44c has 160 cells. The time step for
all three calculations is At = .00625. The calculations are performed with
a narrow band tube width of 6 cells on either side of the front. There is
little change between the calculation with 80 cells and the one with 160 cells,
indicating that convergence has been achieved. As the walls pinch toward
each other, the seen visible angle decreases and the speed diminishes.
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(a) 40 cells (b) 80 cells (c) 160 cells

Fig. 44. Source deposition into trench.

Ton-malling: non-convex sputter laws

A more sophisticated set of examples arises in simulations (for example, of
ion milling) in which the normal speed of the profile depends on the angle
of incidence between the surface normal and the incoming beam. This yield
function is often empirically fit from experiment, and has been observed to
cause such effects as faceting at corners; see Leon, Tazawa, Saito, Yoshi and
Scharfetter (1993) and Katardjiev, Carter and Nobes (1988). As shown in
Adalsteinsson and Sethian (19956 and 1995¢), such yield functions can often
give rise to non-convex Hamiltonians, in which case alternative schemes must
be used. To study this phenomenon, in Fig. 45 we consider several front
motions and their effects on corners. We envision an etching beam coming
down in the vertical direction. In the cases under study here, the angle
@ refers to the angle between the surface normal and the positive vertical.
For this set of calculations, in order to focus on the geometry of sputter
effects on shocks/rarefaction fan development, visibility effects are ignored.
The calculations are made using the schemes for non-convex Hamiltonians
described earlier. Following our usual notation, let F'(6) be the speed of the
front in direction normal to the surface.

In column A, the effects of purely isotropic motion are shown; thus the
yield function is F' = 1. Located above the yield graph are the motions of a
downwards square wave. In column B, the effects of directional motion are
shown; thus the yield function is F' = cos(#). In this case, the horizontal
components on the profile do not move, and vertical components move with
unit speed. In column C, the effects of a yield function of the form F =
(1 + 4sin%(6)] cos(8) are shown.

The results of these calculations are given in Fig. 45. The results show that
the effects of angle dependent yield functions are pronounced. In column A
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U T

Fo) =1 F = cos(6) F = [1 4 4sin?(6)] cos(h)
column A column B column C

Fig. 45. Effect of different yield functions: non-convex scheme.

the isotropic rate produces smooth corners, correctly building the necessary
rarefaction fans in outward corners and entropy satisfying shocks in inward
corners, as discussed and analysed in Sethian (1982 and 1985). In column
B, the directional rate causes the front to be essentially translated upwards,
with minimal rounding of the corners. In column C, the yield function results
in faceting of inward corners where shocks form and sharp corners in the
construction of rarefaction fans.

Discontinuous etch rates

Next, we study the effects of etching through different materials. In this
example, the etch rates are discontinuous, and hence sharp corners develop
in the propagating profile. The results of these calculations are shown in Fig.
46. A top material masks a lower material, and the profile etches through the
lower material first and underneath the upper material. The profile depends
on the ratio of the etch rates. In Fig. 46a, the two materials have the same
etch rate, and hence the front simply propagates in its normal direction with
unit speed, regardless of which material it is passing through. In Fig. 46b,
the bottom material etches four times faster than the top; in Fig. 46c, the
ratio is ten to one. Finally, in Fig. 46d, the ratio is forty to one, in which case
the top material almost acts like a mask.

Stmultaneous etching and deposition
Next, a parameter study of simultaneous etching and deposition is taken from
Adalsteinsson and Sethian (1996). The speed function is

F= (1 - a)FetCh + aFDepositiona (232)
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Fig. 46. Etch ratio = bottom material rate to top material rate.

where

Fuan = (5.2249cos — 5.5914 cos? @ + 1.3665 cos* 9),
FDeposition = /g-Flsotropic + (1 - ﬂ)FSOUrce- (233)

Visibility effects are considered in all terms except isotropic deposition. Fig.
47 shows the results of varying a and 3 between 0 and 1.

23.3. Three-dimensional simulations

Finally, a three-dimensional example of a non-convex sputter yield law is
applied to an indented saddle, which gives rise to faceting as shown in Fig.
48. Complete details of the above and a large variety of simulations of etching,
deposition, and lithography development may be found in Adalsteinsson and
Sethian (19955, 1995¢, 1996).

24, Other work

The range of level set techniques extends far beyond the work covered here.
Here, we point the reader to some additional topics.

On the theoretical side, considerable analysis of level set methods has been
performed in recent years; see, for example, Brakke (1978), Ecker and Huis-
man (1991), Evans and Spruck (1991, 1992q, 19925, 1995), Chen et al. (1991),
Giga and Goto (1992), Giga et al. (1992) and Ambrosio and Soner (1994).
This work has concentrated on many aspects, including questions of exist-
ence and uniqueness, pathological cases, extensions of these ideas to fronts of
co-dimension greater than one (such as evolving curves in three dimensions),
coupling with diffusion equations, links between the level set technique and
Brakke’s groundbreaking original varifold approach.

On the theoretical/numerical analysis side, level set techniques exploit
the considerable technology developed in the area of viscous solutions to
Hamilton-Jacobi equations; see the work in Barles (1993), Crandall, Evans
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F= (1 - a)Fetch + aFDeposition

Feten = (5.2249 cos 6 — 5.5914 cos? 8 + 1.3665 cos? ) cos 8

FDeposition = /BFIsotropic + (1 - IB)FSource
a increases from left to right
[ increases from bottom to top

Fig. 47. Simultaneous etching and deposition.
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4 S/ o

Initial shape: T =0 F =1 +4sin%()]cos(), T =8 Final rotated
Fig. 48. Downward saddle under sputter etch.

and Lions (1984), Crandall, Ishii and Lions (1992), Crandall and Lions (1983)
and Lions (1982).

A wide range of applications relates to level set methods, including work
on minimal arrival times by Falcone (1994), flame propagation work by Zhu
and Ronney (1995), a wide collection of applications from computer vision
by Kimmel (1995), gradient flows applied to geometric active contour models
(Kichenassamy, Kumar, Olver, Tannenbaum and Yezzi 1995), work on affine
invariant scale space (Sapiro and Tannenbaum 1993a), and some related work
on the scalar wave equation (Fatemi, Engquist and Osher 1995). We also refer
the reader to the collection of papers from the International Conference on
Mean Curvature Flow (Buttazzo and Visitin 1994).
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